Locus and Complex Numbers

\(\omega = f(z) \), find the locus of \(\omega \) or \(z \)
given some condition for \(\omega \) or \(z \)

(Make the condition the subject)

\(\omega \) is purely real \(\Rightarrow \) \(\text{Im}(\omega) = 0, \arg \omega = 0 \) or \(\pi \)

\(\omega \) is purely imaginary \(\Rightarrow \) \(\text{Re}(\omega) = 0, \arg \omega = \pm \frac{\pi}{2} \)

\(\arg \left(\frac{\text{linear function}}{\text{linear function}} \right) = \theta \Rightarrow \text{locus is an arc of a circle} \)

* minor arc if \(\theta > \frac{\pi}{2} \)

* major arc if \(\theta < \frac{\pi}{2} \)

* semicircle if \(\theta = \frac{\pi}{2} \)
e.g. (i) Find the locus of \(w \) if \(w = \frac{z+2}{2}, |z| = 4 \)

\[
w = \frac{z+2}{z}
\]

\[
zw = z + 2
\]

\[
z(w-1) = 2
\]

\[
z = \frac{2}{(w-1)}
\]

\[
\therefore \left| \frac{2}{w-1} \right| = 4
\]

\[
\frac{2}{|w-1|} = 4
\]

\[
|w-1| = \frac{1}{2}
\]

\[
\therefore \text{locus is a circle, centre}(1,0)\text{ and radius }\frac{1}{2}
\]

i.e. \((x-1)^2 + y^2 = \frac{1}{4}\)
(ii) Find the locus of z if $w = \frac{z+1}{z-1}$ and w is purely real

\[
w = \frac{(x+1) + iy}{(x-1) + iy} \times \frac{(x-1) - iy}{(x-1) - iy}
\]

\[
= \frac{(x^2 - 1) - i(x+1)y + i(x-1)y + y^2}{(x-1)^2 + y^2}
\]

If w is purely real then $\text{Im}(w) = 0$

\[i.e. -(x+1)y + (x-1)y = 0\]

\[- xy - y + xy - y = 0\]

\[- 2y = 0\]

\[y = 0\]

\[\therefore \text{locus is } y = 0, \text{excluding } (1,0)\]

\[(z-1 \neq 0, \text{bottom of fraction } \neq 0)\]

\[i.e. \text{answer the original question}\]

Note: locus is $y = 0$, excluding $(1,0)$ only
(iii) Find the locus of \(z \) if \(\arg \left(\frac{z}{z-4} \right) = \frac{\pi}{6} \)

\[
\arg \left(\frac{z}{z-4} \right) = \frac{\pi}{6}
\]

\[
\arg z - \arg(z - 4) = \frac{\pi}{6}
\]

\[
\frac{y}{2} = \tan 60
\]

\[
y = 2 \tan 60 = 2\sqrt{3}
\]

\[
r^2 = 2^2 + (2\sqrt{3})^2
\]

\[
r^2 = 16
\]

\[
r = 4
\]

\[
\therefore \text{centre is } (2, -2\sqrt{3})
\]

\[
\therefore \text{locus is the major arc of the circle }
\]

\[
(x - 2)^2 + (y + 2\sqrt{3})^2 = 16 \text{ formed by the chord joining (0,0) and (4,0) but not including these points.}
\]

\[
\text{Exercise 4N; 5, 6}
\]

\[
\text{Exercise 4O; 3 to 10, 12, 13a, 14a}
\]

\[
\text{HSC Geometrical Complex Numbers Questions}
\]

\[
\text{NOTE: } \arg z > \arg(z-4)
\]

\[
\therefore \text{below axis}
\]