

SYDNEY BOYS HIGII SCIIOOL
MOORE PARE, sUREY GILLS
2007
TRIAL HIGHER SCHOOL
CERTIFICATE EXAMINATION

Mathematics
Extension 1

General Instructions

* Reading Time -5 Minutes
- Working time -2 Hours
* Write usiag black or blue pen. Pencil may be used for diagrams.
- Board-approved calculators maybe used.
- A table of standard integrals is provided at the back of this paper.
- All necessary working should be shown in every question.
- Each Question is to be retumed in a separate bundle.

Total marks - 84
Attempt Questions 1-7
All questions are or equal value
Answer each question im a SEPARATE writing booklet. Extra writing booklets are available.
Marks
Question 1 (12 marks) Use a SEPARATE writing booklet.
(a) Evaluate $\lim _{x \rightarrow 0} \frac{\sin 4 x}{5 x}$.
(b) Calculate the acute angle (to the nearest minute) between the lines $2 x+y=4$ and $x-3 y=6$.
(c) (i) Show that $x+1$ is a factor of $x^{3}-4 x^{2}+x+6$.
(ii) Hence, or otherwise factorise $x^{3}-4 x^{2}+x+6$ fully.
(d) The point $P(5,7)$ divides the interval joining the points $A(-1,1)$ and $B(3,5)$ extemally in the ratio $k: 1$. Find the value of k
(e) Find the hotizontal asymptote of the function $y=\frac{3 x^{2}-4 x+1}{2 x^{2}-1}$.
(f) Find a primitive of $\frac{1}{\sqrt{4-x^{2}}}$.
(g) Solve the equation $|x+1|^{2}-4|x+1|-5=0$.

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Question 2 (12 marks)

(a) Let $f(x)=\frac{1}{2} \cos ^{-1}\left(\frac{x}{3}\right)$.
(i) State the domais and range of the function $f(x)$.
(ii) Show that $y=f(x)$ is a decreasing function.
(iii) Find the equation of the tangent to the curve $y=f(x)$ at the point where $x=0$.
(b) Find the derivative of $y=\ln \left(\sin ^{3} x\right)$.
(c) (i) Write $\cos x-\sqrt{3} \sin x$ in the form $A \cos (x+\alpha)$, where $A>0$ and

$$
0<\alpha<\frac{\pi}{2}
$$

(ii) Hence, or othervise, solve $\cos x-\sqrt{3} \sin x+1=0$ for $0 \leq x \leq 2 \pi$.

2
2

Question 3 (12 marks) Use a SEPARATE writing booklet.

(a) (i) Show that the equation $e^{x}-x-2=0$ has a solution in the 1interval $1<x<2$.(ii) Taking an initial approximation of $x=1.5$ use one applicationof Newton's method to approximate the solution, correct tothree decimal places.
(b) The normal at $P\left(2 a p, a p^{2}\right)$ on the parabola $x^{2}=4 a y$ cuts the y-axis at Qand is produced to a point R such that $P Q=Q R$.
(i) Show that the equation of the normal at P is $x+p y=2 a p+a p^{3}$. 2
(ii) Find the coordinates of Q. 1
(iii) Show that R has coordinates $\left(-2 a p, a p^{2}+4 a\right)$. 1
(iv) Show that the locus of R is a parabola, and find its vertex. 3
(c) If $\int_{1}^{5} f(x) d x=3$, find $\int_{1}^{5}(2 f(x)+1) d x$. 2

Question 4 (12 marks) Use a SEPARATE writing booklet
(a) Using the substitution $u=e^{*}$, or otherwise, find $\int e^{\left(e^{x}+x\right)} d x$
(b) The velocity-time graph below shows the velocity of a lift as it travels from the first floor to the twentietb floor of a tall building during the T seconds of its motion.

The velocity $v \mathrm{~m} / \mathrm{s}$ at time $t \leq$ for $0 \leq t \leq 2$ is given by $v=t^{2}(3-t)$. After the First two seconds, the lif moves with a constant velocity of $4 \mathrm{~m} / \mathrm{s}$ for a time, and then decelerates to rest in the final two seconds. The velocity-time graph is symmetrical about $t=\frac{1}{2} T$.
(1) Express the acceleration in termas of f for the first two seconds of the motion of the lift.
(ii) Hence, find the maximum acceleration of the lift during the first two secouds of its motion.
(iii) Given that the total distance tavelled by the lift during its journey is 41 metres, find the exact value of T.
(c) A solid is formed by rotating about the y-axis the region bounded by the curve $y=\cos ^{-1} x$, the x-axis and the y-axis.
(i) Show that the volume of the solid is given by $V=\pi \int_{0}^{\frac{\pi}{2}} \cos ^{3} y d y$.
(ii) Calculate lle volume of this solid.
(a) Use mathematical induction to prove that $\sum_{r=3}^{n} r \times r!m(n+1)-1$.
(b) In the expansion of $\left(2 x+\frac{1}{x^{2}}\right)^{15}$, determine the coefficient of the term that is independent of x.
(c) The acceleration of a particle P is given by the equation $a=8 x\left(x^{2}+1\right)$, where x is the displacement of P from the origin in metres after t seconds with movement being in a straight line.
Initially, the particle is projected from the origin with a velocity of 2 metres per second in the negative direction.
(i) Show that the velocity of the particle can be expressed as

$$
v=2\left(x^{2}+1\right) .
$$

(ii) Hence, show that the equation describing the displacement
of the particle at time t is given by $x=\tan 2 t$.
(iii) Determine the velocity of the particle after $\frac{\pi}{8}$ seconds.

Question 6 (12 marks) Use a SEPARATE writing booklet
(a)

A, B, C and D are points on the circumference of a circle with centre O.
$E F$ is a tangent to the circle at C and the angle $E C D$ is 60°.

Find the value of $\angle B A C$ giving reasons.
(b) (i) By considering the expansion of $(1+x)^{x}$ in ascending powers of x, where n is a positive integer, and differentiating, show that

$$
\binom{n}{1}+2\binom{n}{2}+3\binom{n}{3}+\ldots \ldots+n\binom{n}{n}=n\left(2^{n-1}\right)
$$

(ii) Hence, find an expression for $2\binom{n}{1}+3\binom{n}{2}+4\binom{n}{3}+\ldots .+(n+1)\binom{n}{n}$.
(c) If $f(x+2)=x^{2}+2$, find $f(x)$.
(d) At a particular dinner, each rectangular table has nine seats, five facing the stage and four with their backs to the stage.
In how many ways can 9 people be seated at the table if
(i) John and Mary sit on the same side?
(ii) John and Mary sit on opposite sides? 2

Question 7 (12 marks) Use a SEPARATE writing booklet.
(a) A skier accelerates down a slope and then skis up a short jump (see diagram). The skier leaves the jump at a speed of $12 \mathrm{~m} / \mathrm{s}$ and at an angle of 60° to the horizontal. The skier performs various gymnastic twists and lands on a straight line section of the 45° down-slope T seconds after leaving the jump.
Let the origin O of a Cartesian coordinate system be at the point where the skier leaves the jump. Displacements are measured in metres and time in seconds.
Let $g=10 m s^{-2}$ and neglect air resistance.

(i) Derive the cartesian equation of the skiers flight as a function of y in terms of x.
(ii) Show that $T=\frac{6}{5}(\sqrt{3}+1)$.
(iii) At what speed, in metres per second does the skier land on the down-slope? Give your answer correct to one decimal place.
(b)

$A B C$ is a horizontal, right-angled, isosceles triangle where $A B=B C$ and $\angle A B C=90^{\circ} . P$ is vertically above $B ; Q$ is vertically above C. The angle of elevation of P from A, and Q from P are α and β respectively.
(i) If the angle of elevation of Q from A is θ, prove that

$$
\tan \theta=\frac{\tan \alpha+\tan \beta}{\sqrt{2}}
$$

(ii) If $\angle A P Q=\phi$, prove that $\cos \phi=-\sin \alpha \sin \beta$.

2007 THSC Mathematics Extension 1: Solutions-- Question 1

1. (a) Evaluate $\lim _{x \rightarrow 0} \frac{\sin 4 x}{5 x}$

$$
\text { Solution: } \begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin 4 x}{5 x} & =\lim _{x=0} \frac{\sin 4 x}{4 x} \times \frac{4}{5}, \\
& =\frac{4}{5} \times \lim _{x \rightarrow 0} \frac{\sin 4 x}{4 x}, \\
& =\frac{4}{5} .
\end{aligned}
$$

(b) Calculate the acute angle (to the nearest minute) between the lines $2 x+y=4$ and $x-3 y=6$.

Solution: $\tan \alpha=\frac{1-2-1 / 3 \mid}{1+(-2) \times(1 / 8)}$
$=7^{1+(-2) \times(1 / 8)}$
$\therefore \alpha=\tan ^{-17}$
$=8186089765^{\circ}$ by calculator
$=81^{\circ} \mathrm{W} 2^{\prime}$.
(c) i. Slow that $x+1$ is a factor of $x^{3}-4 x^{2}+x+6$.

$$
\text { Solution: Putting } \begin{aligned}
& P(x)=x^{3}-4 x^{2}+x+6 ; \\
& P(-1)=-1-4-1+0 \\
&=0 . \\
& \therefore x+1 \text { is a factor. }
\end{aligned}
$$

ii. Hence or otherwise factorise $x^{3}-4 x^{2}+x+6$ fully.

$$
\begin{aligned}
& \text { Solution: Possible factors of } 6 \text { are } 1,2,3 \text { or } 1,-2,-3 . \\
& \qquad P(-2)=-8-16-2+6 \neq 0, \\
& P(2)=8-16+2+6, \\
& =0 \\
& \therefore x^{3}-4 x^{2}+x+6=(x+1)(x-2)(x-3) .
\end{aligned}
$$

(d) The point $\Gamma(5,7)$ divide the intorva joing tho poiats $A(\cdots, 1)$ wad $/(3,5)$ coxtemally in the mato $k: 1$. Find the valte of $\%$

$$
\text { Solution: } \begin{aligned}
\frac{5-1}{5-3} & =\frac{k}{1}, \\
5 & =2 \\
k & =3
\end{aligned}
$$

(e) Find the horizontal asymptote of the function $y=\frac{3 x^{2}-1 x+1}{2 x^{2}-1}$

$$
\text { Solution: } \lim _{x \rightarrow t \infty} \frac{3-4 / x+1 / x^{2}}{2-1 / x^{2}}=\frac{3}{2} \text {. }
$$

$$
\text { Solution: } \begin{aligned}
& \lim _{y \rightarrow \infty} \frac{1-1 / x^{2}}{2}=\frac{1}{2} . \\
& \therefore y=y / 2 \text { is tho hotrontal arymptote. }
\end{aligned}
$$

(f) Pind a primitive of $\frac{1}{\sqrt{4-x^{2}}}$

Solution: From the table of standard integrals,

$$
\int \frac{d x}{\sqrt{4-x^{2}}}=\sin ^{-1} \frac{x}{2}+c
$$

(g) Solve the equation $|x+1|^{2}-4|x+1|-5=0$

$$
\text { Solution: } \begin{align*}
\text { Putting } y & =|x+1| ; \\
y^{2}-4 y-5 & =0, \\
(y-5)(y+1) & =0, \\
\therefore y & =5 \text { or }-1 . \\
\text { But } x+1 \mid & \geq 0, \\
\text { hence } x+1 & =5 \text { or } x+1=-5, \\
\text { so } x & =4 ;-6 .
\end{align*}
$$

$$
\begin{aligned}
& \text { (a) }
\end{aligned}
$$

gil

$$
\begin{array}{r}
1 \overline{01}= \\
(1,-1)+9=
\end{array}
$$

$$
1
$$

ha $_{2} \ln _{2 / 1}^{\infty} \leq 1=1$

$\operatorname{Hope}_{x / 12}^{x} \int_{0}^{e} 11=1$
$\left.2 \rightarrow \begin{array}{c}7 \\ 7 \\ 7 x \\ 7\end{array}\right\}^{\prime} h_{2}=x$
$1-x_{1}-\infty=0$

(8)

T-1 [72$]$ 。
$\operatorname{fr}(\xi \neq, \ngtr \varepsilon) \int_{\tau}^{0}=17$
$\rightarrow 4 t_{z-1} 5^{2}+$
$-p \operatorname{pr} \lambda_{z} \int z=177 y:$

$1, x+a+x+1+1+1) p$
$+\operatorname{lof}(111)$
$5 / m \varepsilon=1 \times \varepsilon=x .0 \mathrm{O} O \quad 1$.
$1=1$ aryn smmo (2)

$\frac{(x-27 \varepsilon}{(x-79)}=$
$\frac{1 y}{1 \varphi}=7$
$\xi-7+\varepsilon=1$

$$
\because 7 \Rightarrow 7=0 \rightarrow 0 \neq(9)
$$

$$
\begin{aligned}
& 1-x_{x} \partial=m p \\
& x^{2}=\frac{m+07(\infty)}{(1+\operatorname{lon}+10 n b}
\end{aligned}
$$

Sydney Boys' Thigh School
Trial ISC 2007 -Mathomatics Extonsion 1

Question 6

(a)
$\angle C B D=60^{\circ}$ (attornate scgment theorem) $\angle B C D=90^{\circ}$ (angle in senicircle)
$\therefore \angle C D D=30^{\circ}$ (angie sum of triangle)
$\therefore \angle C A B=30^{\circ}$ (angles at circumference on same atc)
(b) (i) $(1+x)^{n}=1+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+\ldots+{ }^{n} C_{n-1} x^{n-1}+x^{n}$ Differentialing with respeot to x :
$n(1+x)^{n-1}={ }^{n} C_{1}+2^{n} C_{2} x+3^{n} C_{3} x^{2}+\ldots+n^{n} C_{n} x^{n-1}$
Let $x=1$:
$n 2^{2-1}={ }^{4} C_{1}+2^{4} C_{2}+3^{4} C_{3}+\ldots+n^{n} C_{n}$
QED
(ii) Multulying $(1+x)^{\prime \prime}$ by x :
$x(1+x)^{n}={ }^{n} C_{n} x+{ }^{n} C_{1} x^{2}+{ }^{n} C_{2} x^{3}+\ldots+{ }^{n} C_{n} x^{n+1}$
Differeatiating with respect to x :
$x n(1+x)^{n-3}+(1+x)^{n}={ }^{n} C_{0}+2^{n} C_{x} x+3^{n} C_{2} x^{2}+\ldots+(n+1)^{n} C_{n} x^{n}$
Let $x=1$:
$n(2)^{n-1}+(2)^{n}=1+2^{n} C_{1}+3^{n} C_{2}+\ldots+(n+1)^{n} C_{n}$
Thus
$2^{n} C_{1}+3^{n} C_{2}+\ldots+(n+1)^{n} C_{n}=n(2)^{n-1}+(2)^{n}-1$ $=(n+2) 2^{n-1}-1$
(c)

$$
f(x+2)=x^{2}+2
$$

$f(x)=(x-2)^{2}+2$ $=x^{2}-4 x+4+2$ $=x^{2}-4 x+6$
(d)

(i) If $1 \& \mathrm{M}$ sit on the short side, they can be arranged in 12 ways, and the other guests in 71 ways. Thus 12×71 ways.
If $J \& M$ sit on the long side they can be arranged in 20 ways, and the other If Juests in 7 ! Ways. Thus 20×7 !

Hence there are $32 \times 7=161280$ ways.
(ii) If John sits on the short side he has four seats available, and Mary (on the long side) has 5 , thus 20×7 !

But Mary may be the one on the short side.
Thus the total is $40 \times 7!=201600$

2007 ENT
) $a 7$

(ii) $\cot \phi=\frac{A P^{2}+Q^{2}-A Q^{2}}{2 A R E}$

