Circle Geometry

Circle Geometry Definitions

Radius: an interval joining centre to the circumference
Diameter:an interval passing through the centre, joining any two points on the circumference
Chord:an interval joining two points on the circumference
Secant: a line that cuts the circle
Tangent: a line that touches the circle
Arc: a piece of the circumference

Sector: a plane figure with two radii and an arc as boundaries.
 pie", the major sector is the large "piece"

A quadrant is a sector where the angle at the centre is 90 degrees

Segment: a plane figure with a chord and an arc as boundaries.
A semicircle is a segment where the chord is the diameter, it is also a sector as the diameter is two radii.

Concyclic Points: points that lie on the same circle.

Cyclic Quadrilateral: a four sided shape with all vertices on the same circle.

α represents the angle subtended at the centre by the arc $A B$
β represents the angle subtended at the circumference by the arc $A B$

Concentric circles have the same centre.

Circles touching internally share a common tangent.
 share a common tangent.

Chord (Arc) Theorems

 Note: = chords cut off = arcs(1) A perpendicular drawn to a chord from the centre of a circle bisects the chord, and the perpendicular bisector of a chord passes through the centre.

$$
A X=B X \quad(\perp \text { from centre, bisects chord })
$$

Data: $A B \perp O X$
Prove: $A X=B X$
Proof: Join $O A, O B$

$$
\begin{array}{cc}
\angle A X O=\angle B X O=90^{\circ} & (\text { given })(R) \\
A O=B O & (=\text { radii) }(H) \\
O X \text { is common } & (S) \\
\therefore \triangle A X O \equiv \triangle B X O & (R H S)
\end{array}
$$

(matching sides in $\equiv \Delta$'s)

(2) Converse of (1)

The line from the centre of a circle to the midpoint of the chord at right angles.
$O X \perp A B \quad$ (line joining centre to midpoint, \perp to chord)

Data: $A X=B X$
Prove: $A B \perp O X$
Proof: Join $O A, O B$

$A X=B X$	(given $)(S)$
$A O=B O$	$(=\operatorname{radii})(S)$
$O X$ is common	(S)

$\therefore \triangle A X O \equiv \triangle B X O$
$\therefore \angle A X O=\angle B X O$
$\angle A X O+\angle B X O=180^{\circ}$
$2 \angle A X O=180^{\circ}$
$\angle A X O=90^{\circ}$
$\therefore A B \perp O X$
(matching \angle 's in $\equiv \Delta^{\prime}$ s)
(straight $\angle A X B$)
(3) Equal chords of a circle are the same distance from the centre and subtend equal angles at the centre.

$$
\begin{aligned}
O X & =O Y & (=\text { chords, equidistant from centre }) \\
\angle A O B & =\angle C O D & (=\text { chords subtend }=\angle ' \text { s at centre })
\end{aligned}
$$

$$
\text { Data: } A B=C D, O X \perp A B, O Y \perp C D
$$

$$
\text { Prove: } O X=O Y
$$

Proof: Join OA, OC

$$
\begin{array}{rlr}
A B & =C D & \text { (given) } \\
A X & =\frac{1}{2} A B & (\perp \text { bisects chord }) \\
C Y & =\frac{1}{2} C D & (\perp \text { bisects chord }) \\
\therefore A X & =C Y & (S) \\
\angle A X O=\angle C Y O=90^{\circ} & (\text { given })(R) \\
O A & =O C & (=r i i)(H) \\
\therefore \triangle A X O & \equiv \Delta C Y O & (\text { RHS }) \\
\therefore O X & =O Y & \text { (matching sides in } \left.\equiv \Delta^{\prime} \text { 's }\right)
\end{array}
$$

Exercise 9A; 1 ce, 2 aceg, 3, 4, 9, 10 ac, 11 ac, 13, 15, 16, 18

