Circle Geometry

Circle Geometry Definitions

Radius: an interval joining centre to the circumferenceDiameter: an interval passing through the centre, joining any two points on the circumference

Chord: an interval joining two points on the circumference Secant: a line that cuts the circle

Tangent: a line that touches the circle

Arc: a piece of the circumference

Concyclic Points: points that lie on the same circle.

Cyclic Quadrilateral: a four sided shape with all vertices on the same circle.

α represents the angle
subtended at the centre by
the arc AB
β represents the angle
subtended at the
circumference by the arc AB

Concentric circles have the same centre.

Circles touching internally share a common tangent.

Circles touching externally

share a common tangent.

Chord (Arc) Theorems

Note: = *chords cut off* = *arcs*

(1) A perpendicular drawn to a chord from the centre of a circle bisects the chord, and the perpendicular bisector of a chord passes through the centre.

(2) Converse of (1)The line from the centre of a circle to the midpoint of the chord at right angles. $OX \perp AB$ (line joining centre to midpoint, \perp to chord) Data : AX = BXProve : $AB \perp OX$ R Proof: Join OA, OB (given)(S)AX = BX(= radii)(S)AO = BO(S)OX is common (SSS) $\therefore \Delta AXO \equiv \Delta BXO$ (matching \angle 's in $\equiv \Delta$'s) $\therefore \angle AXO = \angle BXO$ (straight $\angle AXB$) $\angle AXO + \angle BXO = 180^{\circ}$ $2\angle AXO = 180^{\circ}$ $\angle AXO = 90^{\circ}$ $\therefore AB \perp OX$

(3) Equal chords of a circle are the same distance from the centre and subtend equal angles at the centre.

(= chords, equidistant from centre) OX = OY $\angle AOB = \angle COD$ (= chords subtend = \angle 's at centre) Data: $AB = CD, OX \perp AB, OY \perp CD$ A Prove : OX = OYProof: Join OA, OC X (given) AB = CD $AX = \frac{1}{2}AB$ $(\perp \text{ bisects chord})$ $CY = \frac{1}{2}CD$ $(\perp \text{ bisects chord})$ $\therefore AX = CY$ (S)(given)(R) $\angle AXO = \angle CYO = 90^{\circ}$ (= radii)(H)OA = OC(RHS) $\therefore \Delta AXO \equiv \Delta CYO$ (matching sides in $\equiv \Delta$'s) $\therefore OX = OY$

