Permutations

Case 3: Ordered Sets of *n* Objects, Not All Different 2 objects all different 2 same (i.e. some of the objects are the same) A B $\mathbf{A} \quad \mathbf{A}$

B A 2! = 23 objects

all different 2 same

A B C A A B A C B A B A B A C B C A

3! = 6

 $\mathbf{C} \quad \mathbf{A} \quad \mathbf{B}$

3 same

4 objects

2 same all different $\mathbf{B} \quad \mathbf{C} \quad \mathbf{D}$ \mathbf{C} \mathbf{B} A D A B C B \mathbf{B} \mathbf{D} D A C B \mathbf{C} \mathbf{B} \mathbf{D} \mathbf{A} \mathbf{B} \mathbf{D} $\mathbf{A} \mathbf{B}$ A C \mathbf{C} \mathbf{D} A D B B A B C A \mathbf{D} \mathbf{B} B \mathbf{C} \mathbf{D} A C A \mathbf{D} \mathbf{C} ${f D}$ B B A $\mathbf{A} \quad \mathbf{C} \quad \mathbf{B}$ A C B D A C B A A C B A D C A B C A C A B $\mathbf{C} \quad \mathbf{A} \quad \mathbf{D}$ \mathbf{C} A B \mathbf{D} B B C A A $\mathbf{C} \mathbf{D} \mathbf{A}$ \mathbf{C} ${f B}$ B A A B B \mathbf{D} \mathbf{A} D B A $\mathbf{C} \quad \mathbf{A} \quad \mathbf{B}$ B D A ${f B}$ B B D \mathbf{A} $\mathbf{C} \mathbf{B} \mathbf{A}$ 4! = 24

3 same A A A B A A B A $\mathbf{A} \quad \mathbf{B} \quad \mathbf{A}$ B $\mathbf{A} \quad \mathbf{A}$

B

4 same $\mathbf{A} \quad \mathbf{A}$ If we arrange *n* objects in a line, of which *x* are alike, the number of ways we could arrange them are;

Number of Arrangements =
$$\frac{n!}{x!}$$

ways of arranging

n objects

ways of arranging

the like objects

e.g. How many different words can be formed using all of the letters in the word

CONNAUGHTON ?

Words =
$$\frac{11!}{2!3!}$$

= $\frac{3326400}{2!3!}$

2! for the two O's

3! for the three N's

2001 Extension 1 HSC Q2c)

The letters A, E, I, O and U are vowels

(i) How many arrangements of the letters in the word **ALGEBRAIC** are possible?

Words =
$$\frac{9!}{2!}$$

= 181440

(ii) How many arrangements of the letters in the word **ALGEBRAIC** are possible if the vowels must occupy the 2nd, 3rd, 5th, and 8th positions?

$$Words = \frac{4!}{2!} \times 5!$$

Number of ways of
$$=1440$$
 placing the vowels

Number of ways of placing the consonants

Exercise 10F; odd