Miscellaneous Dynamics

Questions

e.g. (i) (1992) - variable angular velocity

The diagram shows a model train T that is
 moving around a circular track, centre O and radius a metres.
The train is travelling at a constant speed of $u \mathrm{~m} / \mathrm{s}$. The point N is in the same plane as the track and is x metres from the nearest point on the track. The line $N O$ produced meets the track at S.

Let $\angle T N S=\phi$ and $\angle T O S=\theta$ as in the diagram
a) Express $\frac{d \theta}{d t}$ in terms of a and u

$$
\begin{aligned}
l & =a \theta \\
\frac{d l}{d t} & =a \frac{d \theta}{d t} \\
u & =a \frac{d \theta}{d t} \\
\frac{d \theta}{d t} & =\frac{u}{a}
\end{aligned}
$$

b) Show that $a \sin (\theta-\phi)-(x+a) \sin \phi=0$ and deduce that;

$$
\frac{d \phi}{d t}=\frac{u \cos (\theta-\phi)}{(x+a) \cos \phi+a \cos (\theta-\phi)}
$$

$\angle N T O+\angle T N O=\angle T O S$
(exterior $\angle, \triangle O T N$)

$$
\begin{aligned}
\angle N T O+\phi=\theta \quad \text { In } \triangle N T O ; \frac{a}{\sin \phi} & =\frac{a+x}{\sin (\theta-\phi)} \\
\angle N T O=\theta-\phi \quad a \sin (\theta-\phi) & =(a+x) \sin \phi \\
a \sin (\theta-\phi)-(a+x) \sin \phi & =0
\end{aligned}
$$

differentiate with respect to t

$$
\begin{aligned}
& a \cos (\theta-\phi)\left(\frac{d \theta}{d t}-\frac{d \phi}{d t}\right)-(a+x) \cos \phi \cdot \frac{d \phi}{d t}=0 \\
& a \cos (\theta-\phi) \cdot \frac{d \theta}{d t}-[a \cos (\theta-\phi)+(a+x) \cos \phi] \cdot \frac{d \phi}{d t}=0 \\
& {[a \cos (\theta-\phi)+(a+x) \cos \phi] \cdot \frac{d \phi}{d t}}
\end{aligned}=a \cos (\theta-\phi) \cdot \frac{u}{a} .
$$

c) Show that $\frac{d \phi}{d t}=0$ when $N T$ is tangential to the track. when $N T$ is a tangent;

$$
\angle N T O=90^{\circ}
$$

(tangent \perp radius)
$\therefore \theta-\phi=90^{\circ}$
$\frac{d \phi}{d t}=\frac{u \cos 90^{\circ}}{a \cos 90^{\circ}+(a+x) \cos \phi}$

$$
\therefore \frac{d \phi}{d t}=0
$$

d) Suppose that $x=a$

Show that the train's angular velocity about N when $\theta=\frac{\pi}{2}$ is $\frac{3}{5}$ times the angular velocity about N when $\theta=0$
when $\theta=\frac{\pi}{2}$

when $\theta=0$

$$
\frac{d \phi}{d t}=\frac{u \cos 0}{a \cos 0+2 a \cos 0}
$$

$$
=\frac{u}{3 a}
$$

$$
=\frac{5}{3} \cdot \frac{u}{5 a}
$$

$$
\frac{d \phi}{d t}=\frac{u \cos \left(\frac{\pi}{2}-\phi\right)}{a \cos \left(\frac{\pi}{2}-\phi\right)+2 a \cos \phi}
$$

$$
\begin{aligned}
& \cos \phi=\frac{2}{\sqrt{5}} \\
& \cos \left(\frac{\pi}{2}-\phi\right)=\frac{1}{\sqrt{5}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{u\left(\frac{1}{\sqrt{5}}\right)}{a\left(\frac{1}{\sqrt{5}}\right)+(2 a)\left(\frac{2}{\sqrt{5}}\right)} \\
& =\frac{u}{5 a}
\end{aligned}
$$

Thus the angular velocity when $\theta=\frac{\pi}{2}$ is $\frac{3}{5}$ times the angular velocity when $\theta=0$
(ii) (2000)

A string of length l is initially vertical and has a mass P of $m \mathrm{~kg}$ attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction.
Let O be the centre of this circle and A the initial position of P. Let s denote the arc length $A P, v=\frac{d s}{d t}$, $\theta=\angle A O P$ and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle.
a) Show that the tangential acceleration of P is given by $\frac{d^{2} s}{d t^{2}}=\frac{1}{l} \frac{d}{d \theta}\left(\frac{1}{2} v^{2}\right)$

$$
\begin{aligned}
& s=l \theta \\
& v=\frac{d s}{d t} \\
& =l \frac{d \theta}{d t}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d^{2} s}{d t^{2}} & =\frac{d v}{d t} & & =\frac{1}{l} \cdot \frac{d v}{d \theta} \cdot v \\
& =\frac{d v}{d \theta} \cdot \frac{d \theta}{d t} & & =\frac{1}{l} \cdot \frac{d v}{d \theta} \cdot \frac{d}{d v}\left(\frac{1}{2} v^{2}\right) \\
& =\frac{d v}{d \theta} \cdot \frac{v}{l} & & =\frac{1}{l} \frac{d}{d \theta}\left(\frac{1}{2} v^{2}\right)
\end{aligned}
$$

b) Show that the equation of motion of P is $\frac{1}{l} \frac{d}{d \theta}\left(\frac{1}{2} v^{2}\right)=-g \sin \theta$

$$
\begin{aligned}
m \ddot{s} & =-m g \sin \theta \\
\ddot{s} & =-g \sin \theta \\
\frac{1}{l} \frac{d}{d \theta}\left(\frac{1}{2} v^{2}\right) & =-g \sin \theta
\end{aligned}
$$

c) Deduce that $V^{2}=v^{2}+2 g l(1-\cos \theta)$

$$
\begin{gathered}
\frac{1}{l} \frac{d}{d \theta}\left(\frac{1}{2} v^{2}\right)=-g \sin \theta \\
\frac{d}{d \theta}\left(\frac{1}{2} v^{2}\right)=-g l \sin \theta \\
\frac{1}{2} v^{2}=g l \cos \theta+c
\end{gathered}
$$

$$
\begin{gathered}
\text { when } \theta=0, v=V \\
\therefore V^{2}=2 g l+c \\
c=V^{2}-2 g l \\
v^{2}=2 g l \cos \theta+V^{2}-2 g l \\
V^{2}=v^{2}+2 g l-2 g l \cos \theta \\
V^{2}=v^{2}+2 g l(1-\cos \theta)
\end{gathered}
$$

d) Explain why $T-m g \cos \theta=\frac{1}{l} m v^{2}$

$$
m \ddot{x}=T-m g \cos \theta
$$

But, the resultant force towards the centre is centripetal force.

$$
\begin{aligned}
\frac{m v^{2}}{l} & =T-m g \cos \theta \\
T-m g \cos \theta & =\frac{1}{l} m v^{2}
\end{aligned}
$$

e) Suppose that $V^{2}=3 g l$. Find the value of θ at which $T=0$

$$
\begin{array}{rlrl}
T-m g \cos \theta & =\frac{1}{l} m\left[V^{2}-2 g l(1-\cos \theta)\right] & & \cos \theta=-\frac{1}{3} \\
0-m g \cos \theta & =\frac{1}{l} m[3 g l-2 g l(1-\cos \theta)] & & \theta=1.911 \mathrm{radians} \\
-m g \cos \theta & =m(g+2 g \cos \theta) &
\end{array}
$$

f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero.

When $T=0$, the particle would undergo projectile motion, i.e. it would follow a parabolic arc.
Its initial velocity would be tangential to the circle with magnitude;

$$
\begin{aligned}
T-m g \cos \theta & =\frac{1}{l} m v^{2} \\
-m g\left(-\frac{1}{3}\right) & =\frac{1}{l} m v^{2} \\
v^{2} & =\frac{g l}{3} \\
v & =\sqrt{\frac{g l}{3}}
\end{aligned}
$$

(iii) (2003)

A particle of mass m is thrown from the top, O, of a very tall building with an initial velocity u at an angle of α to the horizontal. The particle experiences the effect of gravity, and a resistance proportional to its velocity in both directions.

The equations of motion in the horizontal and vertical directions are given respectively by

$$
\ddot{x}=-k \dot{x} \quad \text { and } \quad \ddot{y}=-k \dot{y}-g
$$

where k is a constant and the acceleration due to gravity is g.
(You are NOT required to show these)
a) Derive the result $\dot{x}=u e^{-k t} \cos \alpha$

$$
\begin{aligned}
\frac{d \dot{x}}{d t} & =-k \dot{x} \\
t & =-\frac{1}{k} \int_{u \cos \alpha}^{\dot{x}} \frac{d \dot{x}}{\dot{x}}
\end{aligned}
$$

$$
t=-\frac{1}{k}[\log \dot{x}]_{u \cos \alpha}^{\dot{x}}
$$

$$
t=-\frac{1}{k}[\log \dot{x}-\log (u \cos \alpha)]
$$

b) Verify that $\dot{y}=\frac{1}{k}\left[(k u \sin \alpha+g) e^{-k t}-g\right]$ satisfies the appropriate equation of motion and initial condition

$$
\begin{aligned}
\frac{d \dot{y}}{d t} & =-k \dot{y}-g \\
t & =-\int_{u \sin \alpha}^{\dot{y}} \frac{d \dot{y}}{k \dot{y}+g} \\
t & =-\frac{1}{k}[\log (k \dot{y}+g)]_{u \sin \alpha}^{\dot{y}}
\end{aligned}
$$

$$
-k t=\log (k \dot{y}+g)-\log (k u \sin \alpha+g)
$$

$$
\begin{aligned}
& -k t=\log \left(\frac{k \dot{y}+g}{k u \sin \alpha+g}\right) \\
& k \dot{y}+g
\end{aligned}
$$

$$
k \dot{y}+g=e^{-k t}
$$

$k u \sin \alpha+g$

$$
\dot{y}=\frac{1}{k}\left[(k u \sin \alpha+g) e^{-k t}-g\right]
$$

c) Find the value of t when the particle reaches its maximum height Maximum height occurs when $\dot{y}=0$

$$
\begin{aligned}
& t=-\frac{1}{k}[\log (k \dot{y}+g)]_{u \sin \alpha}^{0} \\
& t=-\frac{1}{k}[\log (g)-\log (k u \sin \alpha+g)] \\
& t=\frac{1}{k} \log \left(\frac{k u \sin \alpha+g}{g}\right)
\end{aligned}
$$

d) What is the limiting value of the horizontal displacement of the particle?

$$
\begin{aligned}
\dot{x} & =u e^{-k t} \cos \alpha \\
\frac{d x}{d t} & =u e^{-k t} \cos \alpha
\end{aligned}
$$

$$
\begin{aligned}
& x=\lim _{t \rightarrow \infty} u \cos \alpha \int_{0}^{\infty} e^{-k t} d t \\
& x=\lim _{t \rightarrow \infty} u \cos \alpha\left[-\frac{1}{k} e^{-k t}\right]_{0}^{t} \\
& x=\lim _{t \rightarrow \infty} \frac{u \cos \alpha}{k}\left(-e^{-k t}+1\right) \\
& x=\frac{u \cos \alpha}{k}
\end{aligned}
$$

Exercise 9E; 1 to 4, 7

Exercise 9F; 1, 2, 4, 7, 9, 12, 14, 16, 20, 22, 25

