Harder Extension 1 Circle Geometry

(1) The circle whose diameter is the hypotenuse of a right angled triangle passes through the third vertex.

ABC are concyclic with AB diameter $(\angle \text{ in a semicircle} = 90^\circ)$

(2) If an interval AB subtends the same angle at two points P and Q on the same side of AB, then A,B,P,Q are concyclic.

ABQP is a cyclic quadrilateral

 $(\angle$'s in same segment are =)

(3) If a pair of opposite angles in a quadrilateral are supplementary (or if an exterior angle equals the opposite interior angle) then the quadrilateral is cyclic.

The Four Centres Of A Triangle

(1) The angle bisectors of the vertices are concurrent at the *incentre* which is the centre of the *incircle*, tangent to all three sides.

(2) The perpendicular bisectors of the sides are concurrent at the *circumcentre* which is the centre of the *circumcircle*, passing through all three vertices.

(3) The medians are concurrent at the *centroid*, and the centroid trisects each median.

(4) The altitudes are concurrent at the *orthocentre*.

Interaction Between Geometry & Trigonometry

e.g. (1990)

In the diagram, *AB* is a fixed chord of a circle, *P* a variable point in the circle and *AC* and *BD* are perpendicular to *BP* and *AP* respectively.

(*i*) Show that *ABCD* is a cyclic quadrilateral on a circle with *AB* as diameter.

 $\angle BDA = \angle ACB = 90^{\circ}$

: ABCD is a cyclic quadrilateral

AB is diameter as \angle in semicircle = 90°

(given)

 $(\angle$'s in same segment are =)

(ii) Show that triangles PCD and APB are similar

 $\angle APB = \angle DPC \qquad (common \\ \angle PDC = \angle PBA \qquad (exterior \angle DC) \\ \therefore \Delta PDC \parallel \mid \Delta PBA \qquad (equiangle)$

(common∠'s) (exterior∠ cyclic quadrilateral) (equiangular)

 $\frac{CD}{AB} = \frac{PC}{AP}$ In $\triangle PCA$, $\frac{PC}{AP} = \cos P$ $\therefore \frac{CD}{AB} = \cos P$ $CD = AB\cos P$ Now, $\angle P$ is constant and AB is fixed \therefore CD is constant

 $(\angle$'s in same segment are =) (given)

(ratio of sides in $||| \Delta's$)

(*iv*) Find the locus of the midpoint of *CD*.

ABCD is a cyclic quadrilateral with AB diameter.

Let *M* be the midpoint of *CD O* is the midpoint of *AB OM* is constant

(= chords are equidistant from the centre)

 $\therefore M$ is a fixed distance from O $OM^2 = OC^2 - MC^2$ $= \left(\frac{1}{2}AB\right)^2 - \left(\frac{1}{2}AB\cos P\right)^2$ $=\frac{1}{4}AB^2-\frac{1}{4}AB^2\cos^2 P$ $= \frac{1}{4}AB^{2}\sin^{2}P$ $OM = \frac{1}{2}AB\sin P$

 $\therefore \text{ locus is circle, centre } O$ and radius = $\frac{1}{2}AB\sin P$

2008 Extension 2 Question 7b)

In the diagram, the points *P*, *Q* and *R* lie on a circle. The tangent at *P* and the secant *QR* intersect at *T*. The bisector of $\angle PQR$ meets *QR* at *S* so that $\angle QPS = \angle RPS = \theta$. The intervals *RS*, *SQ* and *PT* have lengths *a*, *b* and *c* respectively.

(*i*) Show that $\angle TSP = \angle TPS$ $\angle RQP = \angle RPT$ $\angle TSP = \angle RQP + \angle SPQ$ $\angle TSP = \angle RPT + \theta$

(alternate segment theorem) (exterior $\angle, \Delta SPQ$)

