
Harder Extension 1
Converse Circle Theorems

Circle Geometry
(1) The circle whose diameter is the hypotenuse of a right angled 

triangle passes through the third vertex.
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(2) If an interval AB subtends the same angle at two points P and Q on 
the same side of AB, then A,B,P,Q are concyclic.
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  ABQP is a cyclic quadrilateral
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(3) If a pair of opposite angles in a quadrilateral are supplementary (or 
if an exterior angle equals the opposite interior angle) then the 
quadrilateral is cyclic. 

The Four Centres Of A Triangle
(1) The angle bisectors of the vertices are concurrent at the incentre 

which is the centre of the incircle, tangent to all three sides.
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(2) The perpendicular bisectors of the sides are concurrent at the 
circumcentre which is the centre of the circumcircle, passing 
through all three vertices.

circumcentre

circumcircle
(3) The medians are concurrent at the centroid, and the centroid trisects 

each median.

centroid



(4) The altitudes are concurrent at the orthocentre.
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e.g. (1990)

In the diagram, AB is a fixed chord of a circle, P a variable point in the 
circle and AC and BD are perpendicular to BP and AP respectively.
(i) Show that ABCD is a cyclic quadrilateral on a circle with AB as 

diameter.
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(ii) Show that triangles PCD and APB are similar
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(iii) Show that as P varies, the segment CD has constant length.
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(iv) Find the locus of the midpoint of CD.
ABCD is a cyclic quadrilateral with AB diameter.
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2008 Extension 2 Question 7b)

In the diagram, the points P, Q and R lie on a circle. The tangent at P 
and the secant QR intersect at T. The bisector of              meets QR at S 
so that                                 . The intervals RS, SQ and PT have lengths 
a, b and c respectively.
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Exercise 10C*
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