Series \& Applications

Definitions

Sequence (Progression): a set of numbers that follow a pattern
Series: a set of numbers added together
a:the first term
T_{n} : the nth term
$\underline{S_{n}}$: the sum of the first n terms
e.g. $T_{n}=n^{2}+2$, find;
(i) $T_{5}=5^{2}+2$
$=27$
(ii) whether 42 is a term in the sequence

$$
\begin{aligned}
42 & =n^{2}+2 \\
n^{2} & =40 \\
n & =\sqrt{40}, \text { which is not an integer }
\end{aligned}
$$

Thus 42 is not a term

Arithmetic Series

An arithmetic series is a sequence of numbers in which each term after the first is found by adding a constant amount to the previous term.

The constant amount is called the common difference, symbolised, \boldsymbol{d}.

$$
\begin{aligned}
d= & T_{2}-a \\
& =T_{3}-T_{2} \\
d & =T_{n}-T_{n-1}
\end{aligned}
$$

$$
T_{1}=a
$$

$$
T_{2}=a+d
$$

$$
\begin{aligned}
& T_{3}=a+2 d \\
& T_{n}=a+(n-1) d
\end{aligned}
$$

e.g.(i) If $T_{3}=9$ and $T_{7}=21$, find;
the general term.

$$
\begin{aligned}
a+2 d & =9 \\
a+6 d & =21 \\
\hline 4 d & =12 \\
d & =3 \therefore a=3
\end{aligned}
$$

$$
\begin{aligned}
T_{n} & =3+(n-1) 3 \\
& =3+3 n-3 \\
& =3 n
\end{aligned}
$$

(ii) $T_{100}=3(100)$
= 300
(iii) the first term greater than 500

$$
\begin{aligned}
T_{n} & >500 \\
3 n & >500 \\
n & >\frac{500}{3}
\end{aligned}
$$

$$
\therefore n=167
$$

$T_{167}=501$, is the first term >500

Exercise 6C; 1aceg, 2bdf, 3aceg, 5, 7bd, 10, 13b, 15
Exercise 6D; 1adg, 2c, 3bd, 6a, 7, 9bd, 13

