Concavit

The second deriviative measures the change in§llope with respect to X,
this 1s known as concavity

If f"(x)> 0, the curve is concave up
If f"(x)<0,the curveis concave down
If f"(x)=0, possible point of inflection

e.g. By looking at the second derivative sketch y = x* +5x° + 3x + 2
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i.e.6x+10>0 " "3

5

X>——
3



Turning Points

All turning points are stationary points.

If f"”(x)> 0, minimum turning point
If f"(x)< 0, maximum turning point

e.g. Find the turning points of y = x> + x* —x +1
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Stationary points occur when v 0
.e.3x°+2x-1=0
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when x = —1,M =6(-1)+2
=—4<0

=4>0
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S 3’27 IS a minimum turning point

Inflection Points

A point of inflection is where there Is a change in concavity, to see if
there is a change, check either side of the point.

e.g. Find the inflection point(s) of y = 4x> +6x° + 2
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Possible points of inflection occur when (;—Z/ =0
ie. 24x+12=0 * i
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(—; ,3) IS a point of inflection
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If % # 0, then it is a point of inflection
d? ”
e g.d—xg =24
1 d° .
when X = "o 24 #0 Exercise 10E; 1, 2bc, 3, 6ac,

/bd, 8, 10, 12, 14, 16, 18
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(—2 ,3) IS a point of inflection

Horizontal Point of Inflection:;
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