Parametric Coordinates

Cartesian Coordinates: curve is described by one equation and points are described by two numbers.
Parametric Coordinates: curve is described by two equations and points are described by one number (parameter).

Any point on the parabola $x^{2}=4 a y$ has coordinates;

$$
\begin{aligned}
& \frac{x=2 a t}{} \quad \underline{y=a t^{2}} \\
& \text { where; } \boldsymbol{a} \text { is the focal length } \\
& \boldsymbol{t} \text { is any real number }
\end{aligned}
$$

e.g. Eliminate the parameter to find the cartesian equation of;

$$
\begin{gathered}
x=\frac{1}{2} t \quad, \quad y=\frac{1}{4} t^{2} \\
y=2 x \quad y=\frac{1}{4}(2 x)^{2} \\
y=\frac{1}{4}\left(4 x^{2}\right) \\
y=x^{2}
\end{gathered}
$$

(ii) State the coordinates of the focus

$$
\begin{aligned}
& \text { the coordinates of the focus } \\
& a=\frac{1}{4}
\end{aligned} \therefore \text { focus }=\left(0, \frac{1}{4}\right)
$$

(iii) Calculate the parametric coordinates of the curve $y=8 x^{2}$

$$
\begin{aligned}
x^{2} & =4 a y \\
4 a & =\frac{1}{8} \\
a & =\frac{1}{32}
\end{aligned}
$$

\therefore the parametric coordinates are $\left(\frac{1}{16} t, \frac{1}{32} t^{2}\right)$

Exercise 9D; 1, 2 (not latus rectum), 3, 5, 7a

