Example	
Prove that	Prove that
$5^n - 1$ is divisible by 4	$3^{2n} - 1$ is divisible by 8
(n a positive integer).	(n a positive integer).
Step 1	Step 1
Testing $n = 1$,	
Expression = $5^1 - 1$	
= 4 (which is divisible by 4)	
\therefore the result is true for $n = 1$.	
Step 2	Step 2
Assume the result is true for $n = k$, that is,	
assume $5^k-1=4\times P$,	
where P is an integer.	
Step 3	Step 3
Hence show for $n = k + 1$, that	
$5^{k+1}-1=4\times Q$ where Q is an integer.	
Now	
$5^{k+1} - 1 = 5^k \times 5^1 - 1$	
= $5 \times (4P + 1) -1$, from our assumption,	
=20P+4	
=4(5P+1)	
= $4 \times Q$ since $5P + 1$ is integral.	
Hence, if the result is true for $n = k$,	
then it is true for $n = k + 1$.	
Step 4	Step 4
Since the result is true for $n = 1$,	
from Step 3 it is true for $n = 1 + 1 = 2$,	
and then for $n = 2 + 1 = 3$, and so on for all	
positive integral values of n.	
Exercise:	
Prove:	
If <i>n</i> is even, then $n^2 + 2n$ is divisible by 8.	