Example		
Show		Prove that
$3^n \ge 1 + 2n.$		$5^n \ge 1 + 4n.$
Step 1		Step 1
Testing $n=1$,		
LHS = 3		
RHS = $1 + 2 \times 1 = 3$,		
\therefore the result is true for $n=1$.		
Step 2		Step 2
Assume the result is true for $n = k$, that is,		
$3^k \ge 1 + 2k$	(1)	
Step 3		Step 3
Hence show the result is true for		
n = k + 1, that is,		
show $3^{k+1} \ge 1 + 2(k+1)$.		
$3^{k+1} \ge 2k+3$		
Now $3^{k+1} = 3^1 \cdot 3^k$		
$\geq 3(1+2k)$ using (1),		
$\therefore 3^{k+1} \geq 3 + 6k,$		
that is, $3^{k+1} \ge 2k + 3 + 4k$		
> 2k + 3,		
since k is a positive integer.		
Hence, if the result is true for $n = k$,		
it is true for $n = k + 1$.		
Step 4		Step 4
Since the result is true for $n = 1$,		
from Step 3 it is true for $n = 1 + 1 = 2$,		
and then for $n = 2 + 1 = 3$, and so on for all		
positive integral values of n.		
Exercise:		
Show:		
$(1+p)^n \ge 1 + np$ where $p > -1$.		