Polynomials

If $(x-a)$ is a factor of $P(x)$, then $P(a)=0$
If $(a x-b)$ is a factor of $P(x)$, then $P\left(\frac{b}{a}\right)=0$

Multiple Roots

If $P(x)$, has a root, $x=a$, of multiplicity m, then $P^{\prime}(x)$ has a root, $x=a$, of multiplicity m - 1

Proof:

$$
\begin{aligned}
P(x) & =(x-a)^{m} Q(x) \quad(m>1, x=a \text { is not a root of } Q(x)) \\
P^{\prime}(x) & =(x-a)^{m} Q^{\prime}(x)+Q(x) m(x-a)^{m-1}(1) \\
& =(x-a)^{m-1}\left[(x-a) Q^{\prime}(x)+m Q(x)\right] \\
& \left.=(x-a)^{m-1} R(x) \quad \text { (where } x=a \text { is not a root of } R(x)\right)
\end{aligned}
$$

$\therefore \quad P^{\prime}(x)$ has a root, $x=a$, of multiplicity $m-1$
e.g. (i) Solve the equation $x^{3}-4 x^{2}-3 x+18=0$, given that it has a double root

$$
\begin{aligned}
P(x) & =x^{3}-4 x^{2}-3 x+18 \\
P^{\prime}(x) & =3 x^{2}-8 x-3 \\
& =(3 x+1)(x-3)
\end{aligned}
$$

\because double root is $x=-\frac{1}{3}$ or $x=3$

NOT POSSIBLE

As $(3 x+1)$ is not a factor

$$
\begin{array}{r}
x^{3}-4 x^{2}-3 x+18=0 \\
(x-3)^{2}(x+2)=0 \\
x=-2 \text { or } x=3 \\
\hline
\end{array}
$$

(ii) (1991)

Let $x=\alpha$ be a root of the quartic polynomial;

$$
P(x)=x^{4}+A x^{3}+B x^{2}+A x+1
$$

where $(2+B)^{2} \neq 4 A^{2}$
a) show that α cannot be 0,1 or -1

$$
\begin{aligned}
P(0) & =1 \neq 0, \quad \therefore \alpha \neq 0 \\
P(1) & =1+A+B+A+1 \\
& =2 A+B+2
\end{aligned}
$$

$$
\begin{aligned}
P(-1) & =1-A+B-A+1 \\
& =-2 A+B+2
\end{aligned}
$$

BUT

$$
\begin{gathered}
(2+B)^{2} \neq 4 A^{2} \\
2+B \neq \pm 2 A \\
\pm 2 A+B+2 \neq 0 \\
\therefore P(1) \neq 0, P(-1) \neq 0 \\
\text { hence } \alpha \neq \pm 1 \\
\hline
\end{gathered}
$$

b) Show that $\frac{1}{\alpha}$ is a root

$$
\begin{aligned}
P\left(\frac{1}{\alpha}\right) & =\frac{1}{\alpha^{4}}+\frac{A}{\alpha^{3}}+\frac{B}{\alpha^{2}}+\frac{A}{\alpha}+1 \\
& =\frac{1+A \alpha+B \alpha^{2}+A \alpha^{3}+\alpha^{4}}{\alpha^{4}} \\
& =\frac{P(\alpha)}{\alpha^{4}} \\
& =\frac{0}{\alpha^{4}} \quad(\because P(\alpha)=0 \text { as } \alpha \text { is a root }) \\
& =0
\end{aligned}
$$

$\therefore \frac{1}{\alpha}$ is a root of $P(x)$
c) Deduce that if α is a multiple root, then its multiplicity is 2 and

$$
4 B=8+A^{2}
$$

If α is a double root of $P(x)$, then so is $\frac{1}{\alpha}$, which accounts for 4 roots
However $P(x)$ is a quartic which has a maximum of 4 roots
Thus no roots can have a multiplicity > 2

$$
\begin{array}{cc}
P^{\prime}(x)=4 x^{3}+3 A x^{2}+2 B x+A & \text { let the roots be } \alpha, \frac{1}{\alpha} \text { and } \beta \\
\alpha+\frac{1}{\alpha}+\beta=-\frac{3}{4} A & \text { (sum of roots) } \ldots \text { (1) } \\
1+\alpha \beta+\frac{\beta}{\alpha}=\frac{1}{2} B & \left(\sum \alpha \beta\right) \ldots(2) \\
\beta=-\frac{1}{4} A & \left(\sum \alpha \beta \gamma\right) \ldots \text { (3) }
\end{array}
$$

Substitute (3) into (1)

$$
\begin{aligned}
\alpha+\frac{1}{\alpha}-\frac{1}{4} A & =-\frac{3}{4} A \\
\alpha+\frac{1}{\alpha} & =-\frac{1}{2} A
\end{aligned}
$$

Substitute (3) into (2)

$$
\begin{aligned}
1-\frac{1}{4} A \alpha-\frac{1}{4} A \frac{1}{\alpha} & =\frac{1}{2} B \\
1-\frac{1}{4} A\left(\alpha+\frac{1}{\alpha}\right) & =\frac{1}{2} B \\
1+\frac{1}{8} A^{2} & =\frac{1}{2} B \\
8+A^{2} & =4 B
\end{aligned}
$$

Exercise 5A; evens

Exercise 5B; 2, 4, 5b, 6b, 7b, 8 a,c,e,g,h

Note: tangent to a cubic has two solutions
Only.-A double root
and a single root

