Rates of Change

In some cases two, or more, rates must be found to get the equation in terms of the given variable.

$$
\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}
$$

e.g. (i) A spherical balloon is being deflated so that the radius decreases at a constant rate of $10 \mathrm{~mm} / \mathrm{s}$.
Calculate the rate of change of volume when the radius of the balloon is 100 mm .

$$
\left.\begin{array}{rlrl}
\frac{d V}{d t} & =? & V=\frac{4}{3} \pi r^{3} & \frac{d V}{d t}
\end{array}=\frac{d r}{d t} \cdot \frac{d V}{d r} \quad \text { when } r=100, \frac{d V}{d t}=-40 \pi(100)^{2}\right)
$$

\therefore when the radius is 100 mm , the volume is decreasing at a rate of $400000 \pi \mathrm{~mm}^{3} / \mathrm{s}$
(ii) A spherical bubble is expanding so that its volume increases at a constant rate of $70 \mathrm{~mm}^{3} / \mathrm{s}$
What is the rate of increase of its surface area when the radius is 10 mm ?

$$
\begin{array}{rlrl}
\frac{d S}{d t}=? \quad \frac{d V}{d t}=70 & V & =\frac{4}{3} \pi r^{3} & S
\end{array}=4 \pi r^{2} .
$$

$\frac{d S}{d t}=\frac{d V}{d t} \cdot \frac{d S}{d r} \cdot \frac{d r}{d V}$

$$
=(70)(8 \pi r)\left(\frac{1}{4 \pi r^{2}}\right)
$$

$$
=\frac{140}{r}
$$

when $r=10, \frac{d V}{d t}=\frac{140}{10}$

$$
=14
$$

\therefore when radius is 10 mm the surface area is increasing at a rate of $14 \mathrm{~mm}^{2} / \mathrm{s}$

Exercise 7E; 2, 5, 6, 9, 13*
Exercise 7F; 2, 5, 9, 10, 11*

