Real Numbers

1. Prime Factors

Every natural number can be written as a product of its prime factors. e.g. $324=4 \times 81$

$$
=2^{2} \times 3^{4}
$$

2. Highest Common Factor (HCF)
1) Write both numbers in terms of its prime factors
2) Take out the common factors

$$
\begin{aligned}
& \text { e.g. } 1176 \text { and } 252 \\
& \qquad \begin{array}{rlrl}
1176 & =6 \times 196 & & \\
& =3 \times 2 \times 49 \times 4 & 252 & =4 \times 63 \\
& =3 \times 2^{3} \times 7^{2} & & =4 \times 9 \times 7 \\
& & =2^{2} \times 3^{2} \times 7
\end{array}
\end{aligned}
$$

$$
H C F=2^{2} \times 3 \times 7
$$

$$
=84
$$

3. Lowest Common Multiple (LCM)

1) Write both numbers in terms of its prime factors
2) Write down all factors without repeating

$$
\begin{aligned}
& \text { e.g. } 48 \text { and } 15 \\
& 48=16 \times 3 \quad 15=3 \times 5 \\
& =2^{4} \times 3 \\
& L C M=2^{4} \times 3 \times 5 \\
& =240
\end{aligned}
$$

When creating a LCM, use the highest power

4. Divisibility Tests

2: even number
3: digits add to a multiple of 3
4: last two digits are divisible by 4 10: ends in a 0
5: ends in a 5 or 0
6: divisible by 2 and 3
7: double the last digit and subtract from ${ }^{\text {d }}$ the other digits, answer is divisible by 7

Fractions \& Decimals

Converting Recurring Decimals into Fractions
e.g.(i) $0 . \dot{6}=0.666666 \ldots$
let $x=0 . \dot{6}$
$x=0.666666 \ldots-$
$10 x=6.666666 \ldots$

$$
\begin{aligned}
9 x & =6 \\
x & =\frac{6}{9} \quad \therefore 0 . \dot{6}=\frac{2}{3}
\end{aligned}
$$

(ii) $0 . \dot{8} \dot{1}=0.818181 \ldots$
let $x=0 . \dot{8} \dot{1}$ $x=0.818181 \ldots$ -

$$
\underline{100 x}=81.818181 \ldots
$$

$$
99 x=81
$$

$$
x=\frac{81}{99} \quad \therefore 0 . \dot{8} \dot{1}=\frac{9}{11}
$$

(iii) $0.3 \dot{2} \dot{7}=0.3272727 \ldots$ let $x=0.32 ் 7$

$$
x=0.3272727 \ldots-
$$

$$
100 x=32.7272727 \ldots
$$

$$
99 x=32.4
$$

$$
x=\frac{32.4}{99}=\frac{324}{990} \quad \therefore 0.3 \dot{2} \dot{7}=\frac{18}{55}
$$

Alternatively:

$$
\text { e.g.(i) } \begin{aligned}
0 . \dot{6} & =\frac{6}{9} \longleftarrow 6 \\
& =\frac{2}{3} \\
& 1 \text { is recurring } \\
& \text { use ' } 9 \text { ' }
\end{aligned}
$$

(iii) $0 . \dot{7} 13 \dot{4}=\frac{7134}{9999}$
$=\frac{2378}{\underline{3333}}$
(ii) $0 . \dot{8} \dot{1}=\frac{81 \longleftarrow}{99} \longleftarrow 21$ is recurring

$$
=\underline{\frac{9}{11}} \quad \text { use '99' }
$$

(iv) $0.3 \dot{2} \dot{7}=\frac{324}{990} 327-3$ (subtract number not recurring)

Exercise 2A;
2adgj, 3bd, 4ac, 5acegi, 6, 7cdg, 8bdfhj, 9, 10bd, 11ac, 12, 13*,

14*

