Rational Numbers

Rational numbers can be expressed in the form $\frac{a}{b}$ where a and b are integers.

Irrational Numbers

Irrational numbers are numbers which are not rational.
All irrational numbers can be expressed as a unique infinite decimal.
e.g. Prove $\sqrt{2}$ is irrational

"Proof by contradiction"

Assume $\sqrt{2}$ is rational
$\therefore \sqrt{2}=\frac{a}{b}$ where a and b are integers with no common factors
$b \sqrt{2}=a$
$2 b^{2}=a^{2}$
Thus a^{2} must be divisible by 2
Any square that is divisible by 2 is divisible by 4
Thus a^{2} must be divisible by 4
$\therefore 2 b^{2}=4 k$ where k is an integer

$$
b^{2}=2 k
$$

So a^{2} and b^{2} are both divisible by 2 and must have a common factor However, a and b have no common factors
so $\sqrt{2}$ is not rational
$\therefore \sqrt{2}$ is irrational

Exercise 2B; 2a, 3, 4 (root 3), 8, 14*

