Symmetry

Odd Functions

$$
f(-x)=-f(x)
$$

The curve has point symmetry about the origin
(If you spin it 180° it looks the same)
e.g. $y=x^{3}, y=\frac{1}{x}, \quad y=x^{7}-x^{5}, \quad y=-3 x^{9}+2 x^{7}$

Note: "all the powers are odd"
e.g. Prove that $y=x^{3}+x^{7}$ is an odd function

$$
f(x)=x^{3}+x^{7}
$$

$$
\begin{aligned}
f(-x) & =(-x)^{3}+(-x)^{7} \\
& =-x^{3}-x^{7} \\
& =-\left(x^{3}+x^{7}\right) \\
& =-f(x) \quad \therefore \text { odd function }
\end{aligned}
$$

Even Functions

$$
f(-x)=f(x)
$$

The curve has line symmetry about the y axis
(the y axis is an axis of symmetry)

$$
\text { e.g. } y=x^{2}, \quad y=x^{2}+4, \quad y=-3 x^{6}+2 x^{4}-27 x^{2}
$$

Note: "all the powers are even"
e.g. Prove that $y=x^{2}+4$ is an even function

$$
f(x)=x^{2}+4 \quad \begin{aligned}
f(-x) & =(-x)^{2}+4 \\
& =x^{2}+4
\end{aligned}
$$

$$
=f(x) \quad \therefore \text { even function }
$$

Exercise 3C; 1aceg, 2, 4aceg, 5, 6bdfh, 8adf, 9, 10*

