Symmetry

Odd Functions

$$f\left(-x\right) = -f\left(x\right)$$

The curve has point symmetry about the origin

(If you spin it 180° it looks the same)
e.g.
$$y = x^3$$
, $y = \frac{1}{x}$, $y = x^7 - x^5$, $y = -3x^9 + 2x^7$

Note: "all the powers are odd"

e.g. Prove that $y = x^3 + x^7$ is an odd function

$$f(x) = x^{3} + x^{7}$$

$$f(-x) = (-x)^{3} + (-x)^{7}$$

$$= -x^{3} - x^{7}$$

$$= -(x^{3} + x^{7})$$

$$= -f(x)$$

$$\therefore \text{ odd function}$$

Even Functions

$$f(-x) = f(x)$$

The curve has line symmetry about the y axis

(the y axis is an axis of symmetry)

e.g.
$$y = x^2$$
, $y = x^2 + 4$, $y = -3x^6 + 2x^4 - 27x^2$

Note: "all the powers are even" e.g. Prove that $y = x^2 + 4$ is an even function $f(x) = x^2 + 4$ $f(-x) = (-x)^2 + 4$ $= x^2 + 4$ = f(x) \therefore even function

Exercise 3C; 1aceg, 2, 4aceg, 5, 6bdfh, 8adf, 9, 10*