Inverse Relations

If $y=f(x)$ is a relation, then the inverse relation obtained by interchanging x and y is $x=f(y)$
e.g. $y=x^{3}+x \quad$ inverse relation is $x=y^{3}+y$

The domain of the relation is the range of its inverse relation
The range of the relation is the domain of its inverse relation
A relation and its inverse relation are reflections of each other in the line $y=x$.

$$
\begin{gathered}
\text { e.g. } y=x^{2} \\
\text { domain: all real } x \\
\text { range: } y \geq 0
\end{gathered}
$$

inverse relation: $x=y^{2}$
domain: $x \geq 0$
range: all real y

Inverse Functions

If an inverse relation of a function, is a function, then it is called an inverse function.

Testing For Inverse Functions

(1) Use a horizontal line test $\boldsymbol{O R}$
(2) When $x=f(y)$ is rewritten as $y=g(x), y=g(x)$ is unique.
(i) $y=x^{2}$

$$
\begin{aligned}
& x=y^{2} \\
& y= \pm \sqrt{x}
\end{aligned}
$$

NOT UNIQUE
(ii) $y=x^{3}$
Has an

UNIQUE

If the inverse relation of $y=f(x)$ is a function, (i.e. $y=f(x)$ has an inverse function), then;

$$
f^{-1}(f(x))=x \quad \text { AND } \quad f\left(f^{-1}(x)\right)=x
$$

$$
\begin{aligned}
& \text { e.g. } \begin{array}{rlr}
f(x)=\frac{x-2}{x+2} & f^{-1}(f(x))= & \frac{2\left(\frac{x-2}{x+2}\right)+2}{1-\left(\frac{x-2}{x+2}\right)} f\left(f^{-1}(x)\right)
\end{array}=\frac{\left(\frac{2 x+2}{1-x}\right)-2}{\left(\frac{2 x+2}{1-x}\right)+2} \\
& y=\frac{x-2}{x+2} \Rightarrow x=\frac{y-2}{y+2} \\
& \begin{array}{rlr}
(y+2) x=y-2 & =\frac{2 x-4+2 x+4}{x+2-x+2} & =\frac{2 x+2-2+2 x}{2 x+2+2-2 x} \\
x y+2 x=y-2 & =\frac{4 x}{4} & =\frac{4 x}{4} \\
(x-1) y=-2 x-2 & =x \checkmark & \\
y=\frac{2 x+2}{} & =x \checkmark
\end{array}
\end{aligned}
$$

(ii) Draw the inverse relation

Exercise 2H; 1aceg, 2, 3bdf, 5ac, 6bd, 7ac, 9bde, 10adfhj

