Shifting Curves II

$$y = kf(x)$$

$$OR$$

$$0 < k < 1, \text{ curve is shallower}$$

$$\frac{y}{k} = f(x)$$

$$(curve \text{ is stretched vertically})$$

$$domain unchanged, range altered$$

$$y = f(kx)$$

$$k > 1, \text{ curve is steeper}$$

$$0 < k < 1, \text{ curve is shallower}$$

$$(curve \text{ is stretched horizontally})$$

$$domain altered, range unchanged$$

$$y = \frac{1}{f(x)}$$

$$x \text{ intercepts} \Rightarrow \text{ asymptotes}$$

$$asymptotes \Rightarrow x \text{ intercepts}$$

$$y > 1 \Rightarrow y < 1$$

 $y < 1 \implies y > 1$

e.g. (i) on one graph draw

a)
$$y = x$$
, $y = \frac{1}{2}x$, $y = 2x$

$$y = x$$

$$y = x$$

$$y = \frac{1}{2}x$$

(*ii*) Sketch
$$x^2 + \frac{y^2}{4} = 1$$

1. *basic curve*: $x^2 + y^2 = 1$

2.
$$\frac{y^2}{4} = \left(\frac{y}{2}\right)^2$$
, $\therefore k = 2$
stretch vertically by a factor of 2

$$(iii) y = \frac{1}{2 - x^2}$$

- 1. $basic\ curve:\ y=x^2$
- 2. reflect in x axis
- 3. shift up 2 units
- 4. *x intercepts become asymptotes*
- 5. $y > 1 \ become \ y < 1$
- 6. $y < 1 \ become \ y > 1$

$$(iv) y = x + \frac{1}{x}$$

1. draw the basic curves:

$$y = x$$
 and $y = \frac{1}{x}$

2. add the y values together

- * choose key points first
 - x intercepts note: vertical asymptotes remain
 - points of intersection
 - as many other points as you need to work out the shape

Exercise 2J: 1, 2a, 3b, 4c, 5ac, 6b, 7ac, 8, 9