Coordinate Geometry

Distance Formula

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

e.g. Find the distance between

$$
\begin{aligned}
&(-1,3) \text { and }(3,5) \\
& d=\sqrt{(5-3)^{2}+(3+1)^{2}} \\
&=\sqrt{2^{2}+4^{2}} \\
&=\sqrt{20} \\
&=2 \sqrt{5} \text { units }
\end{aligned}
$$

The distance formula is finding the length of the hypotenuse, using Pythagoras

Division Of An Interval

Mathematics (2 unit) division of an interval questions are restricted to midpoint questions i.e. dividing in the ratio $1: 1$

In Extension 1 you can be asked to divide an interval in a any ratio, and it could be either an internal or an external division.

A divides $X Y$ internally in the ratio $m: n$

OR

A divides $Y X$ internally in the ratio $n: m$

A divides $X Y$ externally in the ratio $m: n$

Type 1: Internal Division 2003 Extension 1 HSC Q1c)

Find the coordinates of P that divides the interval joining $(-3,4)$ and $(5,6)$ internally in the ratio $1: 3$

- Write down the endpoints of the interval in the same order as they are mentioned.
- Write down the ratio.
- Draw a cross joining the ratio to the two points
- Set up your answer by drawing a set of parentheses with two vinculums separated by a comma
- Add the numbers in the ratio together to get the denominator
- Multiply along the cross and add to get the numerator

$$
\begin{aligned}
(-3,4) & (5,6) \quad P
\end{aligned} \begin{aligned}
\left(\frac{3 \times-3+1 \times 5}{4},\right. & \left.\frac{3 \times 4+1 \times 6}{4}\right) \\
& =\left(\frac{-4}{4}, \frac{18}{4}\right) \quad
\end{aligned}
$$

Type 2: External Division 2004 Extension 1 HSC Q1c)

Let A be the point (3,-1) and B be the point (9,2). Find the coordinates of the point P which divides $A B$ externally in the ratio $5: 2$.

- Done exactly the same as internal division, except make one of the numbers in the ratio negative

$$
\begin{aligned}
P & =\left(\frac{2 \times 3-5 \times 9}{-3}, \frac{2 \times-1-5 \times 2}{-3}\right) \\
& =\left(\frac{-39}{-3}, \frac{-12}{-3}\right) \\
& =(13,4)
\end{aligned}
$$

Type 3: Find an endpoint of an interval 2005 Extension 1 HSC Q1e)

 The point $P(1,4)$ divides the line segment joining $A(-1,8)$ and $B(x, y)$ internally in the ratio $2: 3$.Find the coordinates of the point B.

- Draw the endpoints, ratio and cross the same as previously
- Create the fraction for the x value and equate it with the known value
- Repeat for the y value

$$
\begin{aligned}
1 & =\frac{3 \times-1+2 \times x}{5} \\
5 & =-3+2 x \\
2 x & =8 \\
x & =4
\end{aligned}
$$

$$
(-1,8)
$$

$$
4=\frac{3 \times 8+2 \times y}{5}
$$

$$
20=24+2 y
$$

$$
2 y=-4
$$

$$
\therefore B=(4,-2)
$$

$$
y=-2
$$

Alternative

The point $P(1,4)$ divides the line segment joining $A(-1,8)$ and $B(x, y)$ internally in the ratio $2: 3$.

Find the coordinates of the point B.

If P divides $A B$ internally in the ratio $2: 3$
Then B divides $A P$ externally in the ratio 5:3

$$
\begin{aligned}
B & =\left(\frac{3 \times-1-5 \times 1}{-2}, \frac{3 \times 8-5 \times 4}{-2}\right) \\
& =\left(\frac{-8}{-2}, \frac{4}{-2}\right) \\
& =(4,-2)
\end{aligned}
$$

Type 4: Finding the ratio

1991 Extension 1 HSC Q1c)
The point $P(-3,8)$ divides the interval externally in the ratio $k: 1$.
If A is the point $(6,-4)$ and B is the point $(0,4)$ find the value of k.

- Draw the endpoints, ratio and cross the same as usual
- Create the fraction for the either the x value or the y value (it does not matter which one) and equate it with the known value

$$
\begin{aligned}
-3 & =\frac{1 \times 6+-k \times 0}{-k+1} \\
3 k-3 & =6 \\
3 k & =9
\end{aligned}
$$

$$
k=3
$$

$\therefore P$ divides $A B$ externally in the ratio 3:1

