3D Trigonometry

When doing 3D trigonometry it is often useful to redraw all of the faces of the shape in 2D.

2003 Extension 1 HSC Q7a)
David is in a life raft and Anna is in a cabin cruiser searching for him. They are in contact by mobile phone. David tells Ana that he can see Mt Hope. From David's position the mountain has a bearing of 109°, and the angle of elevation to the top of the mountain is 16°

Anna can also see Mt Hope. From her position it has a bearing of 139°, and and the top of the mountain has an angle of elevation of 23°.

The top of Mt Hope is 1500 m above sea level.
Find the distance and bearing of the life raft from Anna's position.

$$
\begin{aligned}
\frac{B D}{1500}=\tan 74^{\circ} & \text { Similarly; } \\
B D=1500 \tan 74^{\circ} & A B=1500 \tan 67^{\circ} \\
\angle N D B+\angle D B N^{\prime \prime}=180 & \left(\text { cointerior } \angle ' \mathrm{~s}=180, \mathrm{ND} \| \mathrm{N}^{\prime} \mathrm{B}\right) \\
109^{\circ}+\angle D B N^{\prime \prime}=180^{\circ} & \\
\angle D B N^{\prime \prime}=71^{\circ} &
\end{aligned}
$$

Similarly;

$$
\begin{aligned}
\angle A B N^{\prime} & =41^{\circ} \\
\angle A B D & =\angle D B N^{\prime \prime}-\angle A B N^{\prime \prime} \quad(\text { common } \angle ' \mathrm{~s}) \\
\therefore \angle A B D & =30^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
b^{2} & =1500^{2} \tan ^{2} 67^{\circ}+1500^{2} \tan ^{2} 74^{\circ}-2 \times 1500 \tan 67^{\circ} \times 1500 \tan 74^{\circ} \cos 30^{\circ} \\
b & =2798.96 \ldots \\
& =2799 \text { (to nearest metre) }
\end{aligned}
$$

Anna and David are 2799 m apart.

$$
\frac{\sin \angle D A B}{1500 \tan 74^{\circ}}=\frac{\sin 30^{\circ}}{b}
$$

$$
\sin \angle D A B=\frac{1500 \tan 74^{\circ} \sin 30^{\circ}}{b}
$$

$$
\angle D A B=69^{\circ} 9^{\prime} \text { or } 110^{\circ} 51^{\prime}
$$

$$
\text { If } \angle D A B=69^{\circ} 9^{\prime}
$$

$$
\text { then } \angle B D A=80^{\circ} 51^{\prime}
$$

But $\angle D A B>\angle B D A$
$\therefore \angle B D A=110^{\circ} 51^{\prime} \quad \therefore$ The bearing of David from Anna is $249^{\circ} 51^{\prime}$

2000 Extension 1 HSC Q3c)
A surveyor stands at point A, which is due south of a tower $O T$ of height $h \mathrm{~m}$. The angle of elevation of the top of the tower from A is 45°

The surveyor then walks 100 m due east to point B, from where she measures the angle of elevation of the top of the tower to be 30°
(i) Express the length of $O B$ in terms of h.

$$
\begin{aligned}
& \frac{O B}{h}=\tan 60^{\circ} \\
& O B=h \tan 60^{\circ}
\end{aligned}
$$

(ii) Show that $h=50 \sqrt{2}$

$\triangle A T O$ is isosceles

$$
\therefore A O=h
$$

$$
\begin{aligned}
& h^{2}+100^{2}=h^{2} \tan ^{2} 60^{\circ} \\
& h^{2}+100^{2}=3 h^{2} \\
& 2 h^{2}=100^{2} \\
& h^{2}=\frac{100^{2}}{2} \\
& h=\frac{100}{\sqrt{2}} \\
& h=50 \sqrt{2} \\
& \hline
\end{aligned}
$$

(iii) Calculate the bearing of B from the base of the tower.

$$
\begin{aligned}
\tan \angle A O B & =\frac{100}{50 \sqrt{2}} \\
\angle A O B & =54^{\circ} 44^{\prime} \\
\therefore \text { bearing } & =180^{\circ}-54^{\circ} 44^{\prime} \\
& =125^{\circ} 16^{\prime}
\end{aligned}
$$

Book 2: Exercise 2G odds
Exercise 2H evens

