

GIRRAWEEN HIGH SCHOOL HALF YEARLY EXAMINATION

2006

YEAR 11 MATHEMATICS EXTENSION 1

Time allowed – 90 minutes

DIRECTIONS TO CANDIDATES

- Attempt ALL questions.
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board-approved calculators may be used.
- Each question attempted is to be returned on a *separate* piece of paper clearly marked Question 1, Question 2, etc. Each piece of paper must show your name.
- You mayask for extra pieces of paper if you need them.

3

QUESTION 1 (17 Marks)

- (a) Solve for x, $\frac{4}{x-3} < 5$
- (b) Solve for x, $\frac{4x-3}{x+1} \le 3$ 4
- (c) Solve for x, |5 + 2x| = 3x 13
- (d) Factorise as fully as possible $a^{3} + b^{3} + a + b$ 2
- (e) If f(x) = 2x-5 and $g(x) = x^2 + 2x + 3$. Find
- (i) f(3) g(2)3 (ii) g(a-1)2

QUESTION 2 (31 marks)

- (a) The number plate on a car has 2 letters followed by 4 numbers. How many different number plates of this type are possible if repetitions are allowed? 2
- (i) Find the number of 4 digit numbers that can be made using the numbers 0 to 9 (b) if each digit can only be used once? 2 (ii) How many numbers are greater than 6000?
- 2 (iii) How many numbers are odd? 2
- (c) A team of 6 is to be chosen from 7 boys and 8 girls. How many ways can the team be selected if there are (i) All boys?
 - 2 (ii) 3 boys and 3 girls? 2 (iii) If a particular boy is included? 2 (iv) More girls than boys?
 - 4 (v) If two particular girls A and B are not together? 3
- 4 women, 2men and a child sit at a round table. In how many ways can these (d) 7 people be arranged if (i) If there are no restrictions in the selection?
- (ii) If the child is seated between two men? 2 (iii) If the child is seated between two women?
- (i) How many distinct 10 letter words can be formed from the letters of the word (e) **BROTHERTON?** 3 (ii) Find the probability of the two T's being together.

QUESTION 3 (12 Marks)

(a)

(i) Find AF

(ii) Find ∠GAF to nearest degree

2

2

(b)

PT is an observation tower 50m high. The bearings of two points A and B from P are $025\degree$ T and $125\degree$ T respectively. The angles of elevation from these points to the top of the tower are $35\degree$ and $50\degree$ respectively.

(i) Find ∠APB giving a reason

2

(ii) Show that AP= $50 \cot 35^{\circ}$

2

(iii) Show that $AB^2 = 50^2 (\cot^2 35^\circ + \cot^2 50^\circ - 2 \cot 35^\circ \cot 50^\circ \cos 100^\circ)$

3

(iv) Hence find AB to nearest metre

1

QUESTION 4 (16 Marks)

(a) Give neat sketches on separate diagrams for

(i)
$$f(x) = -x^2 + 2$$

2

(ii)
$$f(x) = |x - 2|$$

2

$$(iii)_{x}f(x) = \frac{1}{x}$$

2

(b) State the domain and range for

$$(i) y = |x - 2|$$

(ii)
$$y = \frac{1}{x+2}$$

(iii)
$$y = 3^x$$

6

(c) Is
$$y = \frac{1}{x}$$
 a function? Give a reason.

2

(d) Is
$$y=x^2+8$$
 odd, even or neither? Justify your answer.

2

QUESTION 5 (17 Marks)

(a) Graph
$$y = \cos x$$

$$0 \le x \le 360$$

3

(b) (i) Solve the following equations for $0 \le x \le 360$

$$(i) 4\cos x + 4\sin^2 x = 5$$

4

$$(ii)\cos 2\theta = \frac{-\sqrt{3}}{2}$$

3

(c) Prove the identity

$$\frac{\cos A - \tan A \sin A}{\cos A + \tan A \sin A} = 1 - 2\sin^2 A$$

4

(d)
$$\sqrt{5} = 2 + \frac{1}{a}$$
 show that $a = 4 + \frac{1}{a}$

3

Solutions to Year 11 Extension 1 Half Yearly 2006.

Question

(a)
$$\frac{4}{2(-3)}$$
 < 5

(2)
$$\frac{4}{x-3} = 5$$

 $4 = 5x-15$
 $5x = 19$
 $x = \frac{19}{5}$

$$\frac{2}{5}$$
 \times 719 or x < 3

other methods also valid (3)

(b)
$$\frac{4x-3}{x+1} \leq 3$$

$$0 \times + -1$$

$$(2)$$
 $4x-3 = 3$

(i)
$$x = -2$$
 -11 ≤ 3 \times

$$\bigcirc x = 0 - 3 \le 3$$

$$95 = 7 = \frac{25}{8} \le 3 \times$$

$$6 + 2x = 3x - 1$$

$$x = 6$$

$$5 + 2x = -3x + 1$$

 $5x = -4$

$$x = -\frac{1}{4}$$

$$x = 6$$

$$3(=-\frac{4}{5})$$

$$x = 6$$
 $y = -\frac{4}{5}$
 $| 17| = |7|$ $| 3^{2}/_{5} = -3^{2}/_{5} \times | x|$

solution
$$x = 6$$
 (3)

(e)
$$f(3) = 1$$

 $g(2) = 1 + 2 + 3$
 $= 6$

$$f(3) - g(2) = 1 - 6$$

(u)
$$g(q-1) = (q-1)^2 + 2(q-1) + 3$$

$$=q^{2}-2q+1+2c-2+3$$

$$= a^2 + 2$$

$$(b(c)4\cos x + 4(1-\cos^2 x) = 5$$

$$4\cos^2 x - 4\cos x + 1 = 0$$

$$(2\cos x - 1)^2 = 0$$

$$\cos x = \frac{1}{2}$$

$$x = 60^{\circ}, 300^{\circ}$$

$$\begin{array}{c} \text{(6)} \quad \cos 2\theta = -\sqrt{3} \\ \end{array}$$

$$2\Theta = 750^{\circ}, 210^{\circ}, 570^{\circ}, 570^{\circ}$$

 $\Theta = 75^{\circ}, 105^{\circ}, 255^{\circ}, 285^{\circ}$

$$= \frac{\cos^2 A - \sin^2 A}{(\cos^2 A + \sin^2 A)}$$

$$= \cos^2 A - \sin^2 A$$

$$= |-\sin^2 A - \sin^2 A|$$

$$A = \begin{pmatrix} 1 & 4 \end{pmatrix}$$

(a)
$$\frac{1}{a} = \sqrt{5} - 2$$

$$a = \frac{1.1}{\sqrt{5} + 2}$$

$$\sqrt{5} = \frac{2}{\sqrt{5} + 2}$$

$$= \frac{\sqrt{5+2}}{5-4}$$