Euclidean Geometry

Geometr

|| - is parallel to
\perp - is perpendicular to
$\equiv-$ is congruent to
||| - is similar to
\therefore - therefore
\because - because

Terminology
produced - the line is extended

$Y X$ is produced to B
foot - the base or the bottom
colinear - the points lie on the same line concurrent - the lines intersect at the same point
transversal - a line that cuts two(or more) other lines

Naming Conventions

Angles and Polygons are named in cyclic order

Parallel Lines are named in corresponding order

Equal Lines are marked with the same symbol

$$
\begin{aligned}
& P Q=S R \\
& P S=Q R
\end{aligned}
$$

Constructing Proofs

When constructing a proof, any line that you state must be one of the following;

1. Given information, do not assume information is given, e.g. if you are told two sides are of a triangle are equal don't assume it is isosceles, state that it is isosceles because two sides are equal.
2. Construction of new lines, state clearly your construction so that anyone reading your proof could recreate the construction.
3. A recognised geometrical theorem (or assumption), you must state clearly the theorem you are using
e.g. $\angle A+25+120=180 \quad(\angle$ sum $\Delta=180)$
4. Any working out that follows from lines already stated.

Angle Theorems

Angles in a straight line add up to 180°

$$
\begin{array}{r}
x+30=180 \\
x=150 \\
\hline
\end{array}
$$

Vertically opposite angles are equal

$$
\begin{array}{r}
3 x=39 \\
x=13 \\
\hline
\end{array}
$$

$$
\begin{gathered}
\text { Angles about a point equal } 360^{\circ} \\
y+15+150+120=360 \quad\left(\text { revolution }=360^{\circ}\right)
\end{gathered}
$$

Parallel Line Theorems

Alternate angles (Z) are equal

$$
\begin{array}{ll}
c=f \\
d=e
\end{array} \quad \text { (alternate } \angle ' s=, \| \text { lines) }
$$

Corresponding angles (F) are equal

$$
\begin{aligned}
& a=e \quad \text { (corresponding } \angle ' s=, \| \text { lines) } \\
& b=f \\
& c=g \\
& d=h
\end{aligned}
$$

Cointerior angles (C) are supplementary

$$
\begin{aligned}
& c+e=180 \quad \text { (cointerior } \angle ' \mathrm{~s}=180, \| \text { lines }) \\
& d+f=180
\end{aligned}
$$

$$
x+65=180 \quad\left(\text { straight } \angle C Q D=180^{\circ}\right)
$$

$$
x=115
$$

Construct $X Y \| C D$ passing through P

$$
\begin{aligned}
& \angle X P Q=65^{\circ} \quad\left(\begin{array}{l}
\text { alternate } \angle ' \mathrm{~s}=, X Y \| \mathrm{CQ}) \\
\angle X P B+120=180 \quad\left(\text { cointerior } \angle \mathrm{s}=180^{\circ}, A B \| X Y\right) \\
\angle X P B=60^{\circ} \\
\angle B P Q=\angle X P Q+\angle X P B \quad(\text { common } \angle) \\
y \\
y \\
y \\
y
\end{array} \quad 65+60\right. \\
& \underline{y}
\end{aligned}
$$

Book 2
Exercise 8A; 1cfh, 2bdeh, 3bd, 5bcf, 6bef, 10bd, 11b, 12bc, 13ad, 14, 15

