Velocity \& Acceleration in

Terms of x

If $v=f(x) ;$

Proof: $\frac{d^{2} x}{d t^{2}}=\frac{d v}{d t}$

$$
\frac{d^{2} x}{d t^{2}}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)
$$

$=\frac{d v}{d x} \cdot \frac{d x}{d t}$
$=\frac{d v}{d x} \cdot v$
$=\frac{d v}{d x} \cdot \frac{d}{d v}\left(\frac{1}{2} v^{2}\right)$
$=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$
e.g. (i) A particle moves in a straight line so that $\ddot{\chi}=3-2 x$

Find its velocity in terms of x given that $v=2$ when $x=1$.
$\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=3-2 x$

$$
\begin{gathered}
\frac{1}{2} v^{2}=3 x-x^{2}+c \\
\text { when } x=1, v=2 \\
\text { i.e. } \frac{1}{2}(2)^{2}=3(1)-1^{2}+c \\
c=0 \\
\therefore v^{2}=6 x-2 x^{2} \\
v= \pm \sqrt{6 x-2 x^{2}}
\end{gathered}
$$

$$
\begin{aligned}
v^{2} & \geq 0 \\
6 x-2 x^{2} & \geq 0 \\
2 x(3-x) & \geq 0 \\
0 \leq x & \leq 3
\end{aligned}
$$

\therefore Particle moves between $x=0$ and $x=3$ and nowhere else.
(ii) A particle's acceleration is given by $\ddot{x}=3 x^{2}$. Initially, the particle is 1 unit to the right of O, and is traveling with a velocity of $\sqrt{2} \mathrm{~m} / \mathrm{s}$ in the negative direction. Find x in terms of t.

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =3 x^{2} & \frac{d x}{d t} & =-\sqrt{2 x^{3}} \quad \begin{array}{l}
\text { (Choose -ve to satisfy } \\
\text { the initial conditions) }
\end{array} \\
\frac{1}{2} v^{2} & =x^{3}+c & & =-\sqrt{2} x^{\frac{3}{2}}
\end{aligned}
$$

when $t=0, x=1, v=-\sqrt{2}$

$$
\begin{gathered}
\text { i.e. } \frac{1}{2}(-\sqrt{2})^{2}=1^{3}+c \\
c=0 \\
\therefore v^{2}=2 x^{3} \\
v= \pm \sqrt{2 x^{3}}
\end{gathered}
$$

$$
\frac{d t}{d x}=-\frac{1}{\sqrt{2}} x^{-\frac{3}{2}}
$$

$$
\begin{array}{rlrl}
t & =-\frac{1}{\sqrt{2}} \cdot-2 x^{-\frac{1}{2}}+c & \text { OR } & t=-\frac{1}{\sqrt{2}} \int_{1}^{x} x^{-\frac{3}{2}} d x \\
& =\sqrt{2} x^{-\frac{1}{2}}+c & & =-\frac{1}{\sqrt{2}}\left[-2 x^{-\frac{1}{2}}\right]_{1}^{x} \\
& =\sqrt{\frac{2}{x}}+c & & =\sqrt{2}\left(\frac{1}{\sqrt{x}}-1\right) \\
\text { when } t=0, x=1 & & t+\sqrt{2}=\sqrt{\frac{2}{x}} & \\
\text { i.e. } 0=\sqrt{2}+c & \frac{2}{x}=(t+\sqrt{2})^{2} & \\
t=\sqrt{\frac{2}{x}}-\sqrt{2} & x=\frac{2}{(t+\sqrt{2})^{2}} &
\end{array}
$$

2004 Extension 1 HSC Q5a)
A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, $x=2$ when $t=0$) with an initial velocity of $5 \mathrm{~m} / \mathrm{s}$ and an acceleration given by $\ddot{x}=2 x^{3}+2 x$
(i) Show that $\dot{x}=x^{2}+1$

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =2 x^{3}+2 x \\
\frac{1}{2} v^{2} & =\frac{1}{2} x^{4}+x^{2}+c
\end{aligned}
$$

When $x=2, v=5$

$$
\begin{aligned}
\frac{1}{2}(25) & =\frac{1}{2}(16)+(4)+c \\
c & =\frac{1}{2} \\
v^{2} & =x^{4}+2 x^{2}+1
\end{aligned}
$$

$$
\begin{gathered}
\qquad v^{2}=\left(x^{2}+1\right)^{2} \\
\quad v=x^{2}+1 \\
\text { Note: } v>0 \text {, in order } \\
\text { to satisfy initial } \\
\text { conditions }
\end{gathered}
$$

(ii) Hence find an expression for x in terms of t

$$
\begin{aligned}
& \frac{d x}{d t}=x^{2}+1 \\
& t \\
& \int_{0}^{t} d t=\int_{2}^{x} \frac{d x}{x^{2}+1} \\
& t=\left[\tan ^{-1} x\right]_{2}^{x} \\
& t=\tan ^{-1} x-\tan ^{-1} 2 \\
& \tan ^{-1} x=t+\tan ^{-1} 2 \\
& x=\tan \left(t+\tan ^{-1} 2\right) \\
& x=\frac{\tan t+2}{1-2 \tan t} \\
& \hline
\end{aligned}
$$

Exercise 3E; 1 to 3 acfh, $7,9,11,13,15,17,18$, 20, 21, 24*

