Congruent Triangles In order to prove congruent triangles you require three pieces of information. *<u>Hint:</u>* Look for a side that is the same in both triangles first.</u> **TESTS** (1) Side-Side-Side (SSS) (2) Side-Angle-Side (SAS) NOTE: must be included angle

(4) Right Angle-Hypotenuse-Side (RHS)

e.g. (1985)

In the diagram *ABCD* is a quadrilateral. The diagonals *AC* and *BD* intersect at right angles, and $\angle DAS = \angle BAS$

(*i*) Prove DA = AB $\angle DAS = \angle BAS$ AS is common $\angle DSA = \angle BSA = 90^{\circ}$ $\therefore \Delta DAS \equiv \Delta BAS$ $\therefore DA = AB$

(given)(A) (S) (given)(A) (AAS) $(matching sides in = \Delta's)$

(*ii*) Prove DC = CB DA = AB (proven)(S) $\angle DAS = \angle BAS$ (given)(A) AC is common (S) $\therefore \Delta DAC \equiv \Delta BAC$ (SAS) $\therefore DC = CB$ (matching sides in $\equiv \Delta$'s)

Types Of Triangles

Isosceles Triangle AB = AC (= sides in isosceles ΔABC) $\angle B = \angle C$ (= \angle 's in isosceles ΔABC)

Equilateral Triangle

 $AB = AC = BC \quad (\text{sides in equilateral} \Delta ABC)$ $\angle A = \angle B = \angle C = 60^{\circ} \quad (\angle \text{'s in equilateral} \Delta ABC)$

B

Triangle Terminology

Altitude: (perpendicular height) Perpendicular from one side passing through the vertex

Median: Line joining vertex to the midpoint of the opposite side

Right Bisector: Perpendicular drawn from the midpoint of a side

Exercise 8C; 2, 4beh, 5, 7, 11a, 16, 18, 19a, 21, 22, 26