Congruent Triangles

 In order to prove congruent triangles you require three pieces of information.Hint: Look for a side that is the same in both triangles first.

TESTS

(1) Side-Side-Side (SSS)

(2) Side-Angle-Side (SAS)

NOTE: must be included angle

(3) Angle-Angle-Side (AAS)

(4) Right Angle-Hypotenuse-Side (RHS)

In the diagram $A B C D$ is a quadrilateral. The diagonals $A C$ and $B D$ intersect at right angles, and $\angle D A S=\angle B A S$
(i) Prove $D A=A B$
$\angle D A S=\angle B A S$
$A S$ is common
$\angle D S A=\angle B S A=90^{\circ}$
$\therefore \triangle D A S \equiv \triangle B A S$
$\therefore D A=A B$
(given)(A)
(S)
(given)(A)
(AAS)
(matching sides in $\equiv \Delta^{\prime}$'s)
(ii) Prove $D C=C B$

$$
\begin{array}{cl}
\quad D A=A B & \text { (proven)(S) } \\
\angle D A S=\angle B A S & \text { (given)(A) } \\
A C \text { is common } & (S) \\
\therefore \triangle D A C \equiv \triangle B A C & (\text { SAS }) \\
\therefore D C=C B & \text { (matching sides in } \equiv \Delta^{\prime} \text { 's) }
\end{array}
$$

Types Of Triangles

Isosceles Triangle
$A B=A C \quad(=$ sides in isosceles $\triangle A B C)$
$\angle B=\angle C \quad(=\angle '$ s in isosceles $\triangle A B C)$
Equilateral Triangle

$$
A B=A C=B C \quad(\text { sides in equilateral } \triangle A B C)
$$

$$
\angle A=\angle B=\angle C=60^{\circ} \quad \text { (} \angle \text { 's in equilateral } \triangle A B C \text {) }
$$

Triangle Terminology

Altitude: (perpendicular height) Perpendicular from one side passing through the vertex

Median: Line joining vertex to the midpoint of the opposite side

Right Bisector: Perpendicular drawn from the midpoint of a side

Exercise 8C; 2, 4beh, 5, 7, 11a, 16, 18, 19a, 21, 22, 26

