Maximum/Minimum Problems

Maximum/minimum problems involve finding the vertex of a quadratic Read the question carefully to see if it is the x value or the y value you are required to find.
e.g. (i) Find the maximum value of $y=-3 x^{2}+x-5$
(Need to find the y value of the vertex)

$$
\begin{aligned}
y & =-3 x^{2}+x-5 \\
& =-3\left(x^{2}-\frac{1}{3} x\right)-5 \\
& =-3\left(x-\frac{1}{6}\right)^{2}+\frac{1}{12}-5 \\
& =-3\left(x-\frac{1}{6}\right)^{2}-4 \frac{11}{12}
\end{aligned}
$$

OR

$$
\begin{aligned}
\Delta & =1^{2}-4(-3)(-5) \\
& =-59
\end{aligned}
$$

$$
\begin{aligned}
\text { maximum value } & =\frac{-\Delta}{4 a} \\
& =\frac{-59}{12}
\end{aligned}
$$

\therefore maximum value is $-4 \frac{11}{12}$

$$
=-4 \frac{11}{12}
$$

(ii) A rectangle has perimeter of 64 cm .

What dimensions would the rectangle have for maximum area?
S

$$
A=s(32-s)
$$

$32-s$
We want the dimensions, so it is the x value of the vertex we need to find.

$$
\begin{aligned}
A & =32 s-s^{2} \\
& =-\left(s^{2}-32 s\right) \\
& =-(s-16)^{2}+256
\end{aligned}
$$

\therefore dimensions for a maximum area are $16 \mathrm{~cm} \times 16 \mathrm{~cm}$

Exercise 8E; 1a iv, 2a iii, then multiples of 3

