Rates of Change

e.g. A block of ice in the form of a cube has one edge 10 cm long. It is melting so that its dimensions decrease at the rate of $1 \mathrm{~mm} / \mathrm{s}$.

At what rate is the volume decreasing when the edge is 5 cm long?

$$
\begin{array}{rlrl}
\frac{d x}{d t}=-\frac{1}{10} & V & =x^{3} \\
\frac{d V}{d x} & =3 x^{2}
\end{array}
$$

$$
\frac{d V}{d t}=\frac{d V}{d x} \times \frac{d x}{d t}
$$

$$
=3 x^{2} \times-\frac{1}{10}
$$

$$
=-\frac{3 x^{2}}{10}
$$

when $x=5, \frac{d V}{d t}=-\frac{3(5)^{2}}{10}$
$=-7.5$
\therefore volume is decreasing at $7.5 \mathrm{~cm}^{3} / \mathrm{s}$
(ii) A vessel is in the form of an inverted cone with a vertical angle of 90° If the depth of the water in the vessel is $x \mathrm{~cm}$;
a) find the volume of water.

b) If water is poured in at a rate of $0.2 \mathrm{~cm}^{3} / \mathrm{min}$, find the rate the depth is increasing when the water depth is 4 cm . $\begin{array}{rlrr}\frac{d x}{d t} & =? & \frac{d x}{d t} & =\frac{d x}{d V} \times \frac{d V}{d t} \\ \frac{d V}{d t} & =\frac{1}{5} & & \text { when } x=4, \frac{d x}{d t}= \\ & =\frac{1}{5 \pi(4)^{2}} \times \frac{1}{5} & & =\frac{1}{80 \pi} \\ V & =\frac{1}{3} \pi x^{3} & & \frac{1}{5 \pi x^{2}}\end{array}$

Exercise 7H;
1a, 2a, 4,
6, 7, 8, 10,
12, 14

