Locus

Locus

The collection of all points whose location is determined by some stated law.
e.g. (i) Find the locus of the point which is always 4 units from the origin

$$
\begin{gathered}
\sqrt{(x-0)^{2}+(y-0)^{2}}=4 \\
x^{2}+y^{2}=16
\end{gathered}
$$

(ii) A point moves so that it is always 5 units away from the y axis

$$
\begin{aligned}
\sqrt{(x-0)^{2}+(y-y)^{2}} & =5 \\
x^{2} & =25 \\
x & = \pm 5
\end{aligned}
$$

(iii) A point moves so that it is always 3 units away from the line $y=x+1$

(iv) A point moves so that its distance from the x axis is always 5 times as great as its distance from the y axis.

$$
\begin{aligned}
\sqrt{(x-x)^{2}+(y-0)^{2}} & =5 \sqrt{(x-0)^{2}+(y-y)^{2}} \\
y^{2} & =25 x^{2} \\
\underline{y} & = \pm 5 x
\end{aligned}
$$

(v) A point moves so that its distance from $(1,2)$ is the same as its distance from (5,-4).

Perpendicular bisector of $(1,2)$ and $(5,-4)$

$$
\begin{aligned}
m_{A B} & =\frac{-4-2}{5-1} & M_{A B} & =\left(\frac{1+5}{2}, \frac{-4+2}{2}\right) \\
& =\frac{-6}{4} & & =(3,-1)
\end{aligned}
$$

$$
=\frac{-3}{2}
$$

\therefore required slope $=\frac{2}{3}$

$$
\begin{gathered}
y+1=\frac{2}{3}(x-3) \\
3 y+3=2 x-6 \\
2 x-3 y-9=0 \\
\hline
\end{gathered}
$$

OR

$$
\sqrt{(x-1)^{2}+(y-2)^{2}}=\sqrt{(x-5)^{2}+(y+4)^{2}}
$$

$$
x^{2}-2 x+1+y^{2}-4 y+4=x^{2}-10 x+25+y^{2}+8 y+16
$$

$$
8 x-12 y-36=0
$$

$$
2 x-3 y-9=0
$$

Exercise 9A; 1aceg, 3a, 4, 6, 8, 10, 11, 13, 14

