Combinations

A combination is a set of objects where the order that they are arranged is not important.

If we arrange objects in a line, and the order is not important then;
A B is the same arrangement as $\quad \mathbf{B}$
e.g. 5 objects, arrange 2 of them

A B

A C B C
$\begin{array}{llllll}\text { A } & \mathbf{D} & \mathbf{B} & \mathbf{D} & \mathbf{C} & \mathbf{D}\end{array}$
$\begin{array}{llllllll}\text { A } & \mathbf{E} & \mathbf{B} & \mathbf{E} & \mathbf{C} & \mathbf{E} & \mathbf{D} & \mathbf{E}\end{array}$
Permutations $={ }^{5} P_{2}$
$=20$
Combinations $=\frac{20}{2!}$
$=10$

5 objects, arrange 3 of them

A B C	B (A) C	C (ab	D (A)	E (A)B
A B D	B (A) D	C (A) D	D C	E C
A B E	B (A) E	C (a)	D (A) E	E (A)D
A ©	B © A	C (B) A	D (B) A	E A
A C D	B C D	C D	D (B) C	E C
A C E	B C E	C B	D (B) E	E (B)
A (B) B	B (B) A	C (B) A	D © A	E A
A (B) C	B (B) C	C (B) B	D ©	E ©
A D E	B D E	$C \mathrm{D} E$	D © E	E (\$) D
A B	B A	C A	D (B) A	E (B) A
A (B)	B (B) C	C (B)	D B	E (B) B
A D	B (B)	C (1)	D (E	E (B) C
Permutations $={ }^{5} P_{3}$			Combinations $=$	
$=60$			$=10$	

If we have n different objects, and we arrange k of them and are not concerned about the order;

Number of Arrangements $=\frac{{ }^{n} P_{k}}{k!}$

$$
=\frac{n!}{(n-k)!k!}
$$

$$
={ }^{n} C_{k}
$$

e.g. (i) How many ways can 6 numbers be chosen from 45 numbers?

$$
\begin{aligned}
\text { Ways } & ={ }^{45} C_{6} \\
& =8145060
\end{aligned}
$$

Note: at 40 cents per game, \$3 258024 = amount of money you have to spend to guarantee a win in Lotto.
(ii) Committees of five people are to be obtained from a group of seven men and four women.

How many committees are possible if;
a) there are no restrictions?

$$
\begin{aligned}
\text { Committees } & ={ }^{11} C_{5} & \text { With no restrictions, choose } 5 \text { people } \\
& =462 & \text { from 11, gender does not matter }
\end{aligned}
$$

b) the committee contains only males?

$$
\begin{array}{rlr}
\text { Committees } & ={ }^{7} C_{5} & \text { By restricting it to only males, there is } \\
& =21 & \text { only } 7 \text { people to choose from }
\end{array}
$$

c) the committee contains at least one woman?

Committees $=462-21 \quad$ easier to work out male only and subtract
$=441$
from total number of committees
(iii) A hand of five cards is dealt from a regular pack of fifty two cards.
a) What is the number of possible hands?

$$
\begin{aligned}
\text { Hands } & ={ }^{52} C_{5} \\
& =2598960
\end{aligned}
$$

b) What is the probability of getting "three of a kind"?
choose which number has choose three of
"three of a kind"
$\begin{aligned} \text { Hands } & ={ }^{13} C_{1} \times{ }^{4} C_{3} \times{ }^{48} C_{2} \longleftarrow \quad \text { choose remaining } \\ = & 58656\end{aligned}$

$$
\begin{aligned}
P(\text { three of a kind }) & =\frac{58656}{2598960} \\
& =\frac{94}{2915} \quad(=3.2 \%)
\end{aligned}
$$

2004 Extension 1 HSC Q2e)

A four person team is to be chosen at random from nine women and seven men.
(i) In how many ways can this team be chosen?

$$
\begin{aligned}
\text { Teams } & ={ }^{16} C_{4} & \text { With no restrictions, choose } 4 \text { people } \\
& =1820 & \text { from } 16, \text { gender does not matter }
\end{aligned}
$$

(ii) What is the probability that the team will consist of four women?

$$
\begin{aligned}
\text { Teams } & ={ }^{9} C_{4} \\
& =126
\end{aligned}
$$

By restricting it to only women, there is only 9 people to choose from

$$
\begin{aligned}
P(4 \text { women team }) & =\frac{126}{1820} \\
& =\frac{9}{130}
\end{aligned}
$$

Exercise 10G; odd (not 19, 27)

