Chord of Contact

We know the coordinates of an external point (T)

From this external point, two tangents can be drawn meeting the parabola at P and Q.
The line joining these two points is called the chord of contact.

(1) Parametric approach

(1) Show that $P Q$ has equation $(p+q) x-2 y=2 a p q$
(2) Show the two tangents have equations

$$
p x-y-a p^{2}=0 \text { and } q x-y-a q^{2}=0
$$

(3) Show that T is the point $\{a(p+q), a p q\}$
(4) But T is $\left(x_{0}, y_{0}\right)$

$$
\begin{aligned}
\therefore x_{0} & =a(p+q) \quad \therefore y_{0}=a p q \\
& p+q=\frac{x_{0}}{a}
\end{aligned}
$$

$$
P Q \text { is } \frac{x_{0} x}{a}-2 y=2 y_{0}
$$

notice
similarity to tangent

(2) Cartesian approach

(1) Show that $P T$ has equation $x x_{1}=2 a\left(y+y_{1}\right)$
T lies on PT $\therefore x_{0} x_{1}=2 a\left(y_{0}+y_{1}\right)$
$\therefore P\left(x_{1}, y_{1}\right)$ lies on the line with equation $x_{0} x=2 a\left(y_{0}+y\right)$
(2) Show that $Q T$ has equation $x x_{2}=2 a\left(y+y_{2}\right)$
T lies on $Q T \therefore x_{0} x_{2}=2 a\left(y_{0}+y_{2}\right)$
$\therefore Q\left(x_{2}, y_{2}\right)$ lies on the line with equation $x_{0} x=2 a\left(y_{0}+y\right)$
Hence the chord of contact is $x_{0} x=2 a\left(y_{0}+y\right)$

Exercise 9H; 1c, 2d, 3, 6, 8, 10, 14

