Chord of Contact

We know the coordinates of an external point (*T*)

From this external point, two tangents can be drawn meeting the parabola at *P* and *Q*.

The line joining these two points is called the **chord of contact.**

(1) Parametric approach

Show that PQ has equation (p+q)x-2y = 2apqShow the two tangents have equations $px - y - ap^2 = 0$ and $qx - y - aq^2 = 0$ (3) Show that T is the point $\{a(p+q), apq\}$ **4** But T is (x_0, y_0) $\therefore x_0 = a(p+q) \qquad \therefore y_0 = apq$ $p+q = \frac{\lambda_0}{2}$ notice *PQ* is $\frac{x_0 x}{a} - 2y = 2y_0$ similarity to tangent Hence the chord of contact is $x_0 x = 2a(y_0 + y)$

(2) Cartesian approach

(1) Show that *PT* has equation $xx_1 = 2a(y + y_1)$ *T* lies on *PT* $\therefore x_0 x_1 = 2a(y_0 + y_1)$

 $\therefore P(x_1, y_1)$ lies on the line with equation $x_0 x = 2a(y_0 + y)$

- 2) Show that *QT* has equation $xx_2 = 2a(y + y_2)$ *T* lies on *QT* $\therefore x_0 x_2 = 2a(y_0 + y_2)$
- $\therefore Q(x_2, y_2)$ lies on the line with equation $x_0 x = 2a(y_0 + y)$

Hence the chord of contact is $x_0 x = 2a(y_0 + y)$

Exercise 9H; 1c, 2d, 3, 6, 8, 10, 14