SYDNEY GRAMMAR SCHOOL

2009 Trial Examination

FORM VI MATHEMATICS EXTENSION 2

Tuesday 11th August 2009

General Instructions

- Reading time 5 minutes
- Writing time 3 hours
- Write using black or blue pen.
- Board-approved calculators may be used.
- A list of standard integrals is provided at the end of the examination paper.
- All necessary working should be shown in every question.
- Start each question in a new booklet.

Structure of the paper

- Total marks 120
- All eight questions may be attempted.
- All eight questions are of equal value.

Collection

- Write your candidate number clearly on each booklet and on the tear-off sheet.
- Hand in the eight questions in a single well-ordered pile.
- Hand in a booklet for each question, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Bundle the tear-off sheet with the question it belongs to.
- Bundle the tear-off sheet with the question it belongs to.
- Place the question paper inside your answer booklet for Question 1.

Checklist

- SGS booklets 8 per boy
- Candidature 72 boys

Examiner DNW

<u>QUESTION ONE</u> (15 marks) Use a separate writing booklet. Marks

(a) Evaluate
$$\int_0^1 x e^{x^2} dx$$
.

(b) Complete the square to find
$$\int \frac{dx}{x^2 - 2x + 5}$$
.

(c) Evaluate
$$\int_0^{\frac{\pi}{2}} x \sin x \, dx$$
.

(d) (i) Find values of a, b and c such that

$$\frac{x^2 + 2x - 4}{(x+1)(x^2+4)} = \frac{a}{x+1} + \frac{bx+c}{x^2+4}.$$
(ii) Hence evaluate $\int_0^1 \frac{x^2 + 2x - 4}{(x+1)(x^2+4)} dx.$

(e) Use the substitution $x = \frac{\pi}{2} - u$ to show that

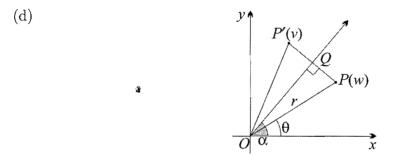
$$\int_0^{\frac{\pi}{2}} \frac{\cos x - \sin x}{1 + \sin 2x} \, dx = 0$$

Ľ

Exam continues next page ...

3

SGS Trial 2009 Form VI Mathematics Extension 2 Page	e 3
<u>QUESTION TWO</u> (15 marks) Use a separate writing booklet.	Marks
 (a) Let z = 3 - 4i and w = 2 + i. Find, in the form x + iy: (i) z + iw (ii) z w 	1
 (h) 2 w (b) Let α = 1 - i. (i) Write α in modulus-argument form. 	1
(ii) Hence show that $\alpha^4 + 4 = 0$. (c) Let $z = x + iy$ and $w = 1 - \frac{2i}{z}$.	2
 (i) Write w in the form a + ib. (ii) For what value of z is w undefined? (iii) Given that w is purely imaginary, describe the locus of z. 	2 1 2



In the Argand diagram above, P represents the complex number $w = r \operatorname{cis} \theta$. Q is that point on the ray $\arg(z) = \alpha$ such that $\angle PQO = \frac{\pi}{2}$. The point P', which represents the complex number v, is the reflection of P in the ray $\arg(z) = \alpha$. You may assume that $\triangle OPQ \equiv \triangle OP'Q$.

- (i) Write down the values of |v| and $\arg(v)$.
- (ii) Hence show that $v = \overline{w} \operatorname{cis} 2\alpha$.
- (iii) The circle |z (2 + 2i)| = 1 is reflected in the ray $\arg(z) = \frac{\pi}{6}$. By using the result in part (ii), or otherwise, show that the equation of this new circle is

$$\left|z - ((1 + \sqrt{3}) + i(\sqrt{3} - 1))\right| = 1.$$

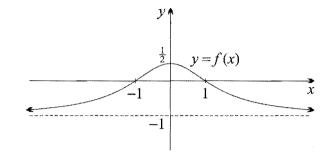
Exam continues overleaf ...

 $\mathbf{2}$

1

 $\mathbf{2}$

 $\underline{\text{QUESTION THREE}}$ (15 marks) Use a separate writing booklet.



The graph of y = f(x) is shown above. The horizontal asymptote is y = -1 and the y-intercept is at $(0, \frac{1}{2})$. The x-intercepts are at (-1, 0) and (1, 0).

Draw separate graphs of the following functions:

(i)
$$y = \frac{1}{f(x)}$$

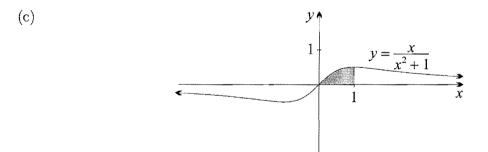
(ii) $y = (f(x))^2$

(iii)
$$y = 4^{f(x)}$$

(a)

(b) The ellipse
$$\mathcal{E}$$
 has equation $\frac{x^2}{25} + \frac{y^2}{16} = 1$.

- (i) State the intercepts with the axes.
- (ii) Determine the eccentricity of \mathcal{E} .
- (iii) State the coordinates of the two foci.
- (iv) Find the equations of the two directrices.



The graph of $y = \frac{x}{x^2 + 1}$ is shown above.

Use the method of cylindrical shells to find the volume of the solid generated when the shaded region bounded by y = 0, $y = \frac{x}{x^2 + 1}$ and x = 1 is rotated about the y-axis.

Exam continues next page ...

Marks

	1	
	1]
	1]
	1	
Γ	5]
1		1

 $\mathbf{2}$

QUESTION FOUR (15 marks) Use a separate writing booklet. Marks

- (a) (i) Show that $2\cos A \sin B = \sin(A+B) \sin(A-B)$. 1
 - (ii) Hence evaluate $\int_0^{\frac{\pi}{3}} 2\cos 2x \sin x \, dx$.

(b) Consider the integral
$$I_n = \int_0^1 \frac{x^n}{\sqrt{1+x}} dx$$
.

(i) Show that $I_0 = 2\sqrt{2} - 2$. 1

(ii) Show that
$$I_{n-1} + I_n = \int_0^1 x^{n-1} \sqrt{1+x} \, dx$$
.

(iii) Use integration by parts to show that

$$I_n = \frac{2\sqrt{2} - 2nI_{n-1}}{2n+1} \,.$$

- (iv) Hence evaluate I_2 .
- (c) The number c is real and non-zero. It is also known that $(1 + ic)^5$ is real.
 - (i) Use the binomial theorem to expand $(1 + ic)^5$.
 - (ii) Show that $c^4 10c^2 + 5 = 0$.

(iii) Hence show that
$$c = \sqrt{5 - 2\sqrt{5}}, -\sqrt{5 - 2\sqrt{5}}, \sqrt{5 + 2\sqrt{5}}$$
 or $-\sqrt{5 + 2\sqrt{5}}$.

- (iv) Let $1 + ic = r \operatorname{cis} \theta$. Use de Moivre's theorem to show that the smallest positive value of θ is $\frac{\pi}{5}$.
- (v) Hence evaluate $\tan \frac{\pi}{5}$.

Exam continues overleaf ...

1

 $\mathbf{2}$

2

1

2

1

1

<u>QUESTION FIVE</u> (15 marks) Use a separate writing booklet.

- (a) The polynomial $P(z) = 2z^3 3z^2 + 8z + 5$ has a zero at z = 1 2i. Factorise P(z).
- (b) (i) The cubic equation $x^3 px q = 0$ has a double root. Show that $27q^2 = 4p^3$.
 - (ii) Hence find the y-coordinates of the stationary points of $y = x^3 3x$ without the use of calculus.
- (c) Consider the series:

 $S = 1 - x^2 + x^4 - x^6 + \cdots$

- (i) For which values of x does S have a limiting sum, and what is the limiting sum?
- (ii) Assuming that it is valid to integrate this series, show that

$$\tan^{-1} x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots$$

- (iii) Show that $\tan \frac{\pi}{12} = 2 \sqrt{3}$.
- (iv) Let $x = \tan \frac{\pi}{12}$. Use this value of x and the first three terms of the series in part (ii) to find an approximation for π , correct to four decimal places.

Marks

3

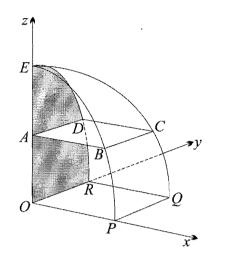
1

 $|\mathbf{2}|$

3

 $\mathbf{2}$

<u>QUESTION SIX</u> (15 marks) Use a separate writing booklet.



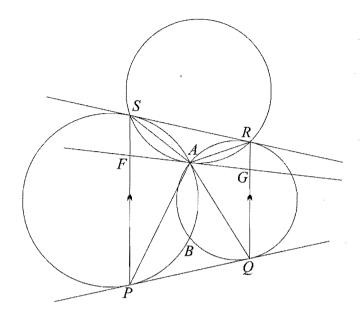
The solid in the diagram above has a horizontal square base OPQR with diagonal OQ = r. The thin horizontal slice ABCD at height z above the base is also square with OC = r. The line OA is vertical. The curve QCE is a quadrant of a circle with centre O and radius r.

- (i) Show that the area of ABCD is $\frac{1}{2}(r^2 z^2)$.
- (ii) Hence find the volume of the solid.
- (b) The points $P(a \sec \theta, b \tan \theta)$ and $Q(a \sec \phi, b \tan \phi)$ lie on the same branch of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, and PQ is a focal chord, passing through S(ae, 0).

Use the gradients of *PS* and *QS* to show that $e = \frac{\sin \theta - \sin \phi}{\sin(\theta - \phi)}$.

 $\mathbf{2}$ 3

Marks	



In the diagram above, two circles of differing radius intersect at A and B. The lines PQ and RS are the common tangents with PS||QR. A third circle passes through the points S, A and R. The tangent to this circle at A meets the parallel lines at F and G.

Let $\angle RAG = \alpha$, $\angle AGR = \beta$ and $\angle GRA = \gamma$.

NOTE: You do not have to copy the diagram above. It has been reproduced for you on a tear-off sheet at the end of this paper. Insert this sheet into your answer booklet.

(i) State why $AFP = \beta$.

(c)

- (ii) Show that $\angle SPA = \alpha$.
- (iii) Hence prove that FG is also tangent to the circle which passes through the points A, P and Q.

<u>QUESTION SEVEN</u> (15 marks) Use a separate writing booklet.

- (a) (i) The definition of ${}^{k}C_{r}$ is the coefficient of x^{r} in the expansion of $(1+x)^{k}$. Using 1 this definition, what is the value of ${}^{k}C_{r}$ whenever k < r?
 - (ii) Prove that $\sum_{k=0}^{n} {}^{k}C_{r} = {}^{n+1}C_{r+1}$. You may assume the addition property for the **2** binomial coefficients, which may be written as ${}^{k}C_{r} = {}^{k+1}C_{r+1} {}^{k}C_{r+1}$.
 - (iii) Use the result proven in part (ii) to show that $\sum_{k=0}^{n} k = \frac{1}{2}n(n+1)$.
 - (iv) (α) Show that $k^2 = 2 \times {}^kC_2 + {}^kC_1$. (β) Hence find a formula for $\sum_{k=0}^{n} k^2$.
- (b) Show that the equation of the directrix of the parabola $y = ax^2 + bx$ is

$$y = -\frac{b^2 + 1}{4a}$$

(c) A projectile is fired from the origin O with initial speed V and angle of projection α . The Cartesian equation of its trajectory is

$$y = x \tan \alpha - \frac{g x^2 \sec^2 \alpha}{2V^2} \,.$$

- (i) Use part (b) to find the equation of the directrix.
- (ii) Hence show that the focus lies on the circle

$$x^2 + y^2 = rac{V^4}{4g^2}$$
 .

(iii) There is only one trajectory which passes through P. Use the geometry of the parabola to prove that OP is a focal chord.

Marks

 $\mathbf{2}$

 $\mathbf{2}$

<u>QUESTION EIGHT</u> (15 marks) Use a separate writing booklet.

(a) Consider the function

$$f(x) = x - rac{g^2}{x} - 2g \log\left(rac{x}{g}
ight)$$
, for $x \ge g$.

(i) Evaluate f(g).

(ii) Show that
$$f'(x) = \left(1 - \frac{g}{x}\right)^2$$
.

- (iii) Explain why f(x) > 0 for x > g.
- (b) A body is moving vertically through a resisting medium, with resistance proportional to its speed. The body is initially fired upwards from the origin with speed v_0 . Let y metres be the height of the object above the origin at time t seconds, and let g be the constant acceleration due to gravity. Thus

$$\frac{d^2y}{dt^2} = -(g+kv) \quad \text{where} \quad k > 0 \,.$$

(i) Find v as a function of t, and hence show that

$$k^{2}y = (g + kv_{0})(1 - e^{-kt}) - gkt$$

- (ii) Find T, the time taken to reach the maximum height.
- (iii) Show that when t = 2T,

$$k^{2}y = (g + kv_{0}) - \frac{g^{2}}{g + kv_{0}} - 2g\log\left(\frac{g + kv_{0}}{g}\right)$$
.

- (iv) Use this result and part (a) to show that the downwards journey takes longer.
- (c) Suppose that the equation f(x) = 0 has a single root $x = \alpha$, where $a \le \alpha \le b$. Let the sequence

$$x_0 = a, \ x_1 = b, \ x_2 = \frac{a+b}{2}, \ x_3, \ x_4, \ \dots$$

be the successive approximations of $x = \alpha$ obtained when the bisection method is used. (The bisection method is also known as the method of halving the interval.) Let $u_n = |x_n - x_{n-1}|$ be the distances between successive terms of this sequence.

- (i) Explain why $u_{n+1} = \frac{1}{2}u_n$.
- (ii) Hence show that $u_n = (b-a) \left(\frac{1}{2}\right)^{n-1}$ for $n \ge 1$.
- (iii) Explain why $|\alpha x_n| \leq u_n$.
- (iv) Hence prove that the bisection method converges to the root $x = \alpha$. That is, prove that $\lim_{n \to \infty} x_n = \alpha$.

END OF EXAMINATION

Tear-off pages follow ...

Marks

1

1

1

4

1

1

1

1
2

1

<u>QUESTION ONE</u> (15 marks)

(b)
$$\int \frac{dx}{x^2 - 2x + 5} = \int \frac{dx}{(x - 1)^2 + 2^2}$$
$$= \frac{1}{2} \tan^{-1} \frac{x - 1}{2} + C$$

(c)
$$\int_{0}^{\frac{\pi}{2}} x \sin x \, dx = \left[-x \cos x \right]_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} \cos x \, dx \quad \text{(by parts)}$$
$$= \left[-x \cos x + \sin x \right]_{0}^{\frac{\pi}{2}}$$
$$= 1$$

$$x^{2} + 2x - 4 = a(x^{2} + 4) + (bx + c)(x + 1).$$

At $x = -1$
 $-5 = 5a + 0$
so
 $a = -1.$
At $x = 0$
 $-4 = -4 + c$
so
 $c = 0.$
At $x = 1$
 $-1 = -5 + 2b$
so
 $b = 2.$

(ii)
$$\int_{0}^{1} \frac{x^{2} + 2x - 4}{(x+1)(x^{2}+4)} dx = \int_{0}^{1} \frac{2x}{x^{2}+4} - \frac{1}{x+1} dx \quad \text{(from part (i))}$$
$$= \left[\log(x^{2}+4) - \log(x+1) \right]_{0}^{1}$$
$$= \log 5 - \log 2 - \log 4 + \log 1$$
$$= \log \left(\frac{5}{8}\right)$$

(e) Let $I = \int_0^{\frac{\pi}{2}} \frac{\cos x - \sin x}{1 + \sin 2x} dx$ Put $x = \frac{\pi}{2} - u$ then dx = -du. at x = 0, $u = \frac{\pi}{2}$ and at $x = \frac{\pi}{2}$, u = 0. \checkmark

 $\sqrt{}$

 \checkmark

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

Thus
$$I = \int_{\frac{\pi}{2}}^{0} \frac{\cos(\frac{\pi}{2} - u) - \sin(\frac{\pi}{2} - u)}{1 + \sin 2(\frac{\pi}{2} - u)} (-du)$$

 $= \int_{0}^{\frac{\pi}{2}} \frac{\cos(\frac{\pi}{2} - u) - \sin(\frac{\pi}{2} - u)}{1 + \sin 2(\frac{\pi}{2} - u)} du$
 $= \int_{0}^{\frac{\pi}{2}} \frac{\sin u - \cos u}{1 + \sin 2u} du$
so $I = -I$
Hence $I = 0$

Total for Question 1: 15 Marks

<u>QUESTION TWO</u> (15 marks)

(a) (i)
$$z + iw = 3 - 4i + 2i - 1$$

= 2 - 2i

(ii)
$$z \overline{w} = (3 - 4i)(2 - i)$$

= 2 - 11*i*

(b) (i)
$$1 - i = \sqrt{2} \operatorname{cis}(-\frac{\pi}{4})$$

(ii)
$$\alpha^4 + 4 = \left(\sqrt{2}\operatorname{cis}\left(-\frac{\pi}{4}\right)\right)^4 + 4$$
$$= 4\operatorname{cis}(-\pi) + 4 \quad \text{(by de Moivre)}$$
$$= -4 + 4$$
$$= 0$$

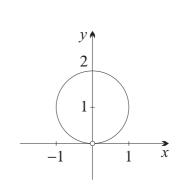
(c) (i)
$$w = 1 - \frac{2i}{z}$$
$$= 1 - \frac{2i\overline{z}}{|z|^2}$$
$$= \left(1 - \frac{2y}{x^2 + y^2}\right) - \frac{2ix}{x^2 + y^2}$$

(ii) w is undefined when z = 0

(iii) Since w is pure imaginary,

Re(w) = 0 so $x^{2} + y^{2} - 2y = 0$ or $x^{2} + (y - 1)^{2} = 1$

Thus the locus is the unit circle with centre z = i, omitting the origin.



 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

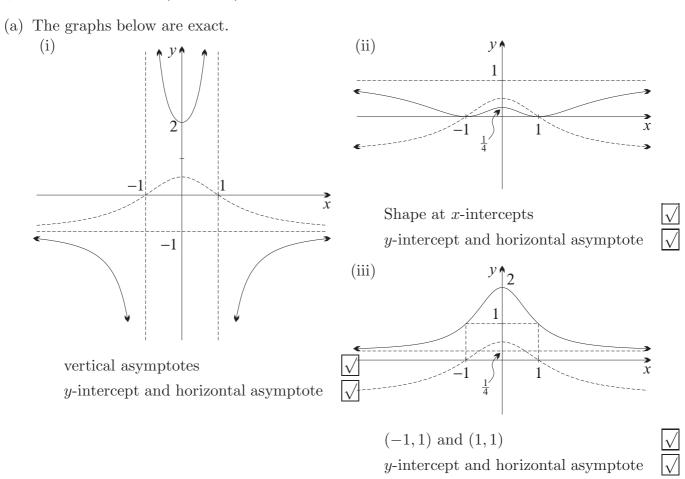
 $\sqrt{}$

 $\sqrt{}$

(d) (i)
$$|v| = |w|$$
 (since $OP' = OP$)
 $= r$
 $\arg v = \alpha + \angle P'OQ$
 $= \alpha + \angle POQ$
 $= \alpha + (\alpha - \theta)$
 $= 2\alpha - \theta$
(ii) $v = r \operatorname{cis}(2\alpha - \theta)$
 $= r \operatorname{cis}(-\theta) \operatorname{cis} 2\alpha$
 $= \overline{w} \operatorname{cis} 2\alpha$
(iii) The radius remains the same for a reflection. The new centre will be

Total for Question 2: 15 Marks

<u>QUESTION THREE</u> (15 marks)



- (b) (i) (5,0), (-5,0), (0,4) and (0,-4)
 - (ii) From $b^2 = a^2(1 e^2)$ $16 = 25(1 - e^2)$ $e^2 = \frac{9}{25}$ so $e = \frac{3}{5}$

(iii)
$$(3,0)$$
 and $(-3,0)$

(iv)
$$x = \frac{25}{3}$$
 and $x = -\frac{25}{3}$

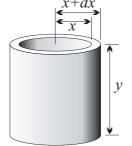
(c) The volume of the element is the difference between two cylinders, thus

$$dV = \pi (x + dx)^2 y - \pi x^2 y$$
$$= \pi y (2x + dx) dx$$

Sum the elements and take the limit as $dx \to 0$ to get

$$V = \int_0^1 2\pi xy \, dx$$

= $2\pi \int_0^1 \frac{x^2}{x^2 + 1} \, dx$
= $2\pi \int_0^1 1 - \frac{1}{x^2 + 1} \, dx$
= $2\pi \left[x - \tan^{-1} x \right]_0^1$
= $2\pi - \frac{\pi^2}{2}$



 \checkmark

 \checkmark

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

Total for Question 3: 15 Marks

<u>QUESTION FOUR</u> (15 marks)

(a) (i)
$$RHS = \sin A \cos B + \cos A \sin B$$
$$\underbrace{-\sin A \cos B + \cos A \sin B}_{= 2 \cos A \sin B}$$
(ii)
$$\int_{0}^{\frac{\pi}{3}} 2 \cos 2x \sin x \, dx = \int_{0}^{\frac{\pi}{3}} \sin 3x - \sin x \, dx$$
$$= \left[-\frac{1}{3} \cos 3x + \cos x \right]_{0}^{\frac{\pi}{3}}$$
$$= \left(\frac{1}{3} + \frac{1}{2} \right) - \left(-\frac{1}{3} + 1 \right)$$
$$= \frac{1}{6}$$

(b) (i)
$$I_0 = \int_0^1 \frac{1}{\sqrt{1+x}} dx$$

= $2 \left[\sqrt{1+x} \right]_0^1$
= $2\sqrt{2} - 2$.

(ii)
$$LHS = \int_{0}^{1} \frac{x^{n-1}}{\sqrt{1+x}} + \frac{x^{n}}{\sqrt{1+x}} dx$$
$$= \int_{0}^{1} \frac{x^{n-1}(1+x)}{\sqrt{1+x}} dx$$
$$= \int_{0}^{1} x^{n-1}\sqrt{1+x} dx$$
$$= RHS.$$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 \checkmark

 $\sqrt{}$

(iii)
$$I_n = \left[2x^n\sqrt{1+x}\right]_0^1 - 2n\int_0^1 x^{n-1}\sqrt{1+x}\,dx \quad \text{(by parts)}$$
$$= 2\sqrt{2} - 2n\left(I_{n-1} + I_n\right) \quad \text{(by part ii)}$$
so $(2n+1)I_n = 2\sqrt{2} - 2nI_{n-1}$

(iv)
$$I_{1} = \frac{1}{3} \left(2\sqrt{2} - 2I_{0} \right)$$
$$= \frac{1}{3} (4 - 2\sqrt{2}) .$$
$$I_{2} = \frac{1}{5} \left(2\sqrt{2} - 4I_{1} \right)$$
$$= \frac{1}{5} \left(2\sqrt{2} - \frac{16}{3} + \frac{8\sqrt{2}}{3} \right)$$
$$= \frac{1}{15} (14\sqrt{2} - 16) .$$

(c) (i)
$$(1+ic)^5 = 1 + 5ic - 10c^2 - 10ic^3 + 5c^4 + ic^5$$

 $I_n = \frac{2\sqrt{2} - 2nI_{n-1}}{2n+1}.$

(ii)
$$\operatorname{Im} \left((1+ic)^5 \right) = 0$$

so $5c - 10c^3 + c^5 = 0$
thus $c^4 - 10c^2 + 5 = 0$ (since $c \neq 0$)

(iii) The equation is a quadratic in c^2 , thus $c^2 = \frac{10 + \sqrt{80}}{2} \text{ or } \frac{10 - \sqrt{80}}{2}$ hence $c = \sqrt{5 - 2\sqrt{5}}, -\sqrt{5 - 2\sqrt{5}}, \sqrt{5 + 2\sqrt{5}} \text{ or } -\sqrt{5 + 2\sqrt{5}}.$ (iv) $(r \operatorname{cis} \theta)^5 = r^5 \operatorname{cis} 5\theta$ (by de Moivre) and since this is real $\sin 5\theta = 0$ $5\theta = n\pi$

or
$$\theta = \frac{n\pi}{5}$$

Thus the smallest positive value is $\theta = \frac{\pi}{5}$.

(v) This corresponds to the smallest positive value of c.

Thus
$$\tan \frac{\pi}{5} = \frac{c}{1}$$

= $\sqrt{5 - 2\sqrt{5}}$.

Total for Question 4: 15 Marks

 $Y \uparrow$

<u>QUESTION FIVE</u> (15 marks)

- (a) Since P(z) has real coefficients, it follows that z = 1 + 2i is also a zero. Let the remaining zero be α , then summing the roots $\alpha + 2 = \frac{3}{2}$ or $\alpha = -\frac{1}{2}$ Hence $P(z) = 2(z + \frac{1}{2})(z - (1 - 2i))(z - (1 + 2i))$.
- (b) (i) Let the roots be α , α and β , then by the sums and products of roots $2\alpha + \beta = 0 \qquad (1)$ $\alpha^2 + 2\alpha\beta = -p \qquad (2)$ $\alpha^2\beta = q \qquad (3)$ From (1), equations (2) and (3) become $3\alpha^2 = p \qquad (4)$ $2\alpha^3 = -q \qquad (5)$ hence $4p^3 = 4 \times 27\alpha^6 \quad \text{(from equation (4))}$ $= 27 \times 4\alpha^6$ $= 27q^2 \quad \text{(from equation (5).)}$
 - (ii) Re-writing the equation of the cubic

 $x^{3} - 3x - y = 0$ which has a double root at the *y*-coordinates of the stationary points, so $27y^{2} = 4 \times 3^{3} \quad \text{(from part (i))}$ so $y^{2} = 4$ thus y = 2 or -2

(c) (i) |x| < 1or -1 < x < 1for which $S = \frac{1}{1 + x^2}$ $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

(ii) Thus
$$\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \cdots$$

so
$$\int \frac{dx}{1+x^2} = \int (1 - x^2 + x^4 - x^6 + \cdots) dx$$

and
$$\tan^{-1} x = \left(x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots\right) + C$$

At $x = 0$, $\tan^{-1} 0 = 0$, so
$$C = 0$$

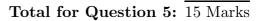
$$\tan^{-1} x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots$$

(iii)
$$\tan \frac{\pi}{12} = \tan \left(\frac{\pi}{3} - \frac{\pi}{4}\right)$$

 $= \frac{\sqrt{3} - 1}{1 + \sqrt{3}}$
 $= \frac{(\sqrt{3} - 1)^2}{2}$
 $= 2 - \sqrt{3}.$

(iv)
$$\frac{\pi}{12} \doteq (2 - \sqrt{3}) - \frac{1}{3}(2 - \sqrt{3})^3 + \frac{1}{5}(2 - \sqrt{3})^5$$

so
$$\pi \doteq 12\left((2 - \sqrt{3}) - \frac{1}{3}(2 - \sqrt{3})^3 + \frac{1}{5}(2 - \sqrt{3})^5\right)$$
$$\doteq 3.1418 \quad \text{(correct to four decimal places)}$$



 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

<u>QUESTION SIX</u> (15 marks)

 $\begin{array}{c|c} A \\ z \\ r \\ 0 \end{array}$

In $\triangle OAC$ $AC^2 = r^2 - z^2$ (by Pythagoras) hence $|ABCD| = \frac{1}{2}AC^2$ (a square is a rhombus) $= \frac{1}{2}(r^2 - z^2)$.

(ii) The volume of the thin slice with thickness dz is $dV = \frac{1}{2}(r^2 - z^2) dz$ Sum the elements and take the limit as $dz \to 0$ to get

$$V = \frac{1}{2} \int_0^r (r^2 - z^2) dz$$

= $\frac{1}{2} \left[r^2 z - \frac{1}{3} z^3 \right]_0^r$
= $\frac{1}{2} (r^3 - \frac{1}{3} r^3) - 0$
= $\frac{1}{3} r^3$.

(b) Since S lies on PQ it follows that

$$\begin{array}{ccc} & \text{gradient } PS = \text{gradient } QS & & \swarrow \\ \text{thus} & & \frac{b \tan \theta}{a \sec \theta - ae} = \frac{b \tan \phi}{a \sec \phi - ae} \\ \text{or} & & \frac{\tan \theta}{\sec \theta - e} = \frac{\tan \phi}{\sec \phi - e} \\ \text{whence} & \tan \theta \sec \phi - e \tan \theta = \tan \phi \sec \theta - e \tan \phi \\ \text{and} & & e(\tan \theta - \tan \phi) = \tan \theta \sec \phi - \tan \phi \sec \theta . \\ \text{So} & & e = \frac{\tan \theta \sec \phi - \tan \phi \sec \theta}{\tan \theta - \tan \phi} \times \frac{\cos \theta \cos \phi}{\cos \theta \cos \phi} \\ & & = \frac{\sin \theta - \sin \phi}{\sin \theta \cos \phi - \cos \theta \sin \phi} \\ & & = \frac{\sin \theta - \sin \phi}{\sin (\theta - \phi)} . \\ \end{array}$$

$$\begin{array}{c} \text{(c)} & \text{(i)} & \angle AFP = \beta & (\text{Alternate angles, } PS||QR.) \\ \text{(ii)} & \angle RSA = \angle RAG & (\text{angle in the alternate segment of circle } SAR) \\ & & = \alpha . \\ \\ \angle SPA = \angle RSA & (\text{angle in the alternate segment of circle } PBAS) \\ & & = \alpha . \end{array}$$

(iii) $\angle FAP = \gamma$ (angle sum of $\triangle FAP$) $\angle PQA = \angle QRA$ (angle in the alternate segment of circle RABQ) $= \gamma$.

Thus $\angle FAP = \angle PQA$

Hence FG is tangent to the circle through APQ by the converse of the angles in the alternate segment theorem.

Total for Question 6: 15 Marks

 $\sqrt{}$

<u>QUESTION SEVEN</u> (15 marks)

(a) (i) If k < r then there is no term in x^r , hence ${}^kC_r = 0$.

(ii)
$$\sum_{k=0}^{n} {}^{k}C_{r} = \sum_{k=0}^{n} \left({}^{k+1}C_{r+1} - {}^{k}C_{r+1} \right) \\ = \left({}^{1}C_{r+1} - {}^{0}C_{r+1} \right) + \left({}^{2}C_{r+1} - {}^{1}C_{r+1} \right) + \left({}^{3}C_{r+1} - {}^{2}C_{r+1} \right) \\ + \dots + \left({}^{n+1}C_{r+1} - {}^{n}C_{r+1} \right) \\ = {}^{n+1}C_{r+1} - {}^{0}C_{r+1} \quad \text{(since all other terms cancel)} \\ = {}^{n+1}C_{r+1} - 0 \quad \text{(by part (i))} \\ = {}^{n+1}C_{r+1}$$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 \checkmark

(iii)
$$\sum_{k=0}^{n} k = \sum_{k=0}^{n} {}^{k}C_{1}$$
$$= {}^{n+1}C_{2} \quad \text{(by part (ii))}$$
$$= \frac{1}{2}n(n+1).$$

(iv) (
$$\alpha$$
) $2 \times {}^{k}C_{2} + {}^{k}C_{1} = k(k-1) + k$
= k^{2} .

$$(\beta) \qquad \sum_{k=0}^{n} k^2 = \sum_{k=0}^{n} 2 \times {}^{k}C_2 + {}^{k}C_1$$

= 2 × ⁿ⁺¹C₃ + ⁿ⁺¹C₂ (by part (ii))
= $\frac{1}{3}(n+1)n(n-1) + \frac{1}{2}(n+1)n$
= $\frac{1}{6}(n+1)n(2(n-1)+3)$
= $\frac{1}{6}(n+1)n(2n+1)$.

(b) The focal length $= \frac{1}{4a}$ At the vertex y = x(ax + b) $= -\frac{b}{2a}(-\frac{b}{2} + b)$ $= -\frac{b^2}{4a}$

hence the directrix has equation

$$y = -\frac{b^2}{4a} - \frac{1}{4a} \\ = -\frac{b^2 + 1}{4a}.$$

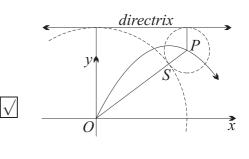
(c) (i)
$$y = -\frac{\tan^2 \alpha + 1}{4\left(\frac{-g \sec^2 \alpha}{2V^2}\right)}$$
$$= \frac{V^2 \sec^2 \alpha}{2g \sec^2 \alpha}$$
$$= \frac{V^2}{2g}$$

(ii) The origin lies on the parabola so is equidistant from the focus and directrix. Thus there is a circle with centre the origin which passes through the focus and is tangent to the directrix.

Hence the radius of this circle is
$$\frac{V^2}{2g}$$

and the equation is $x^2 + y^2 = \frac{V^4}{4g^2}$.

(iii) Since P is on the parabola, P is equidistant from the focus and directrix. Hence there is a second circle with centre P which passes through the focus and is tangent to the directrix.



 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

Since there is only one trajectory, the two circles intersect once only, at S.

Whence the two circles have a common tangent at S, which is perpendicular to both radii OS and SP. Hence O, S and P are collinear.

 $\sqrt{}$

That is, OP is a focal chord.

Total for Question 7: 15 Marks

<u>QUESTION EIGHT</u> (15 marks)

(a) (i)
$$f(g) = g - \frac{g^2}{g} - 2g \log\left(\frac{g}{g}\right)$$
$$= g - g - 2g \log 1$$
$$= 0$$

(ii)
$$f'(x) = 1 + \frac{g^2}{x^2} - \frac{2g}{x}$$

= $\left(1 - \frac{g}{x}\right)^2$.

(iii) Now f(g) = 0and f'(x) > 0 for $x \neq g$ (that is, f(x) increasing for x > g) hence f(x) > 0 for x > g.

(b) (i)
$$v' = -(g + kv)$$

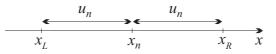
so $\frac{kv'}{g + kv} = -k$
Integrate with respect to t to get
 $\int \frac{gv}{g + kv} dt = \int -k dt$.
Note on the LHS that the numerator is the derivative of the denominator
so $\log(g + kv) = -kt + C_1$ (for some constant C_1)
or $g + kv = Ae^{-kt}$ where $A = e^{C_1}$.
At $t = 0$ $g + kv = Ae^{-kt}$ where $A = e^{C_1}$.
At $t = 0$ $g + kv = (g + kv_0)e^{-kt}$.
Integrate again with respect to t to get
 $gt + ky = -\frac{1}{k}(g + kv_0)e^{-kt} + \frac{1}{k}C_2$ (for some constant C_2)
so $kgt + k^2y = ((g + kv_0)e^{-kt} + C_2)$.
At $t = 0$ $0 + 0 = -(g + kv_0)e^{-kt} + C_2$.
At $t = 0$ $0 + 0 = -(g + kv_0)(1 - e^{-kt})$
or $ky^2 = (g + kv_0)(1 - e^{-kt})$
or $ky^2 = (g + kv_0)(1 - e^{-kt})$
or $ky^2 = (g + kv_0)(1 - e^{-kt})$
so $T = \frac{1}{k}\log\left(\frac{g + kv_0}{g}\right)$.
(iii) At $t = 2T$, $k^2y = (g + kv_0)(1 - (e^{-kT})^2) - 2gkT$
 $= (g + kv_0)\left(1 - (\frac{g}{g + kv_0})^2\right) - 2g\log\left(\frac{g + kv_0}{g}\right)$.
(iv) Let $x = g + kv_0$ then at $t = 2T$
 $k^2y = x - \frac{g^2}{x} - 2g\log\left(\frac{x}{g}\right)$
 $= f(x)$
 > 0 (by part (a))

That is, it is above the ground and hence the downwards journey takes longer.

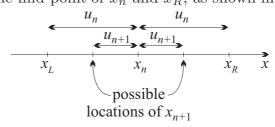
(c) (i) The value x_n is the average of two numbers, one of which is x_{n-1} . Let these two numbers be x_L and x_R , where $x_L < x_n < x_R$. Thus

$$u_n = x_n - x_L = x_R - x_n \,.$$

The situation is shown on the number line.



Either x_{n+1} is the mid-point of x_L and x_n or x_{n+1} is the mid-point of x_n and x_R , as shown in the diagram.



In either case the $|x_{n+1} - x_n| = \frac{1}{2}|x_n - x_{n-1}|$, viz $u_{n+1} = \frac{1}{2}u_n$. $\sqrt{}$

(ii) Since $\frac{u_{n+1}}{u_n} = \frac{1}{2}$ for all n, u_n is a GP with common ratio $= \frac{1}{2}$. First term $u_1 = |b - a|$ = (b - a) $u_n = (b-a)\left(\frac{1}{2}\right)^{n-1}$

Hence

(iii) The root α lies between x_L and x_R , as in the diagram below.

Hence the distance from α to x_n is less than or equal to u_n . That is $|\alpha - x_n| \leq u_n$.

(iv)
$$\lim_{n \to \infty} |\alpha - x_n| \leq \lim_{n \to \infty} u_n$$
$$\leq \lim_{n \to \infty} (b - a) \left(\frac{1}{2}\right)^{n-1}$$
$$\leq 0$$
hence
$$\lim_{n \to \infty} |\alpha - x_n| = 0$$
thus
$$\lim_{n \to \infty} x_n = \alpha.$$

Total for Question 8: 15 Marks

 $\sqrt{}$

 $\sqrt{}$