Concavity

The second deriviative measures the change in slope with respect to x, this is known as concavity

If $f^{\prime \prime}(x)>0$, the curve is concave up
If $f^{\prime \prime}(x)<0$, the curve is concave down
If $f^{\prime \prime}(x)=0$, possible point of inflection
e.g. By looking at the second derivative sketch $y=x^{3}+5 x^{2}+3 x+2$

$$
\begin{aligned}
& \frac{d y}{d x}=3 x^{2}+10 x+3 \\
& \frac{d^{2} y}{d x^{2}}=6 x+10
\end{aligned}
$$

$\quad d x^{2}$
Curve is concave up when $\frac{d^{2} y}{d x^{2}}>0$
i.e. $6 x+10>0$

$$
x>-\frac{5}{3}
$$

Turning Points

All turning points are stationary points.
If $f^{\prime \prime}(x)>0$, minimum turning point
If $f^{\prime \prime}(x)<0$, maximum turning point
e.g. Find the turning points of $y=x^{3}+x^{2}-x+1$

$$
\begin{aligned}
\frac{d y}{d x} & =3 x^{2}+2 x-1 \\
\frac{d^{2} y}{d x^{2}} & =6 x+2
\end{aligned}
$$

Stationary points occur when $\frac{d y}{d x}=0$

$$
\begin{aligned}
& \text { i.e. } 3 x^{2}+2 x-1=0 \\
& \qquad \begin{array}{l}
(3 x-1)(x+1)=0 \\
x=\frac{1}{3} \quad \text { or } \quad x=-1
\end{array}
\end{aligned}
$$

when $x=-1, \frac{d^{2} y}{d x^{2}}=6(-1)+2$

$$
=-4<0
$$

$\therefore(-1,2)$ is a maximum turning point
when $x=\frac{1}{3}, \frac{d^{2} y}{d x^{2}}=6\left(\frac{1}{3}\right)+2$

$$
=4>0
$$

$\therefore\left(\frac{1}{3}, \frac{22}{27}\right)$ is a minimum turning point

Inflection Points

A point of inflection is where there is a change in concavity, to see if there is a change, check either side of the point.
e.g. Find the inflection point(s) of $y=4 x^{3}+6 x^{2}+2$

$$
\frac{d y}{d x}=12 x^{2}+12 x \quad \frac{d^{2} y}{d x^{2}}=24 x+12
$$

Possible points of inflection occur when $\frac{d^{2} y}{d x^{2}}=0$
i.e. $24 x+12=0$

$$
x=-\frac{1}{2}
$$

\therefore there is a change in concavity
$\therefore\left(-\frac{1}{2}, 3\right)$ is a point of inflection

x	$-\frac{1^{-}}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}_{(-1)}^{+}$
$\frac{d^{2} y}{d x^{2}}$	$\bigwedge^{(-12)}$	-	$V^{(12)}$

Horizontal Point of Inflection; $\quad \frac{d y}{d x}=0 \quad \frac{d^{2} y}{d x^{2}}=0 \quad \frac{d^{3} y}{d x^{3}} \neq 0$

Alternative Way of Finding Inflection Points

Possible points of inflection occur when $\frac{d^{2} y}{d x^{2}}=0$
If the first non-zero derivative is of odd order,

$$
\begin{aligned}
& \text { i.e } \frac{d^{3} y}{d x^{3}} \neq 0 \text { or } \frac{d^{5} y}{d x^{5}} \neq 0 \text { or } \frac{d^{7} y}{d x^{7}} \neq 0 \text { etc } \\
& \text { then it is a point of inflection }
\end{aligned}
$$

If the first non-zero derivative is of even order,

$$
\begin{aligned}
& \text { i.e } \frac{d^{4} y}{d x^{4}} \neq 0 \text { or } \frac{d^{6} y}{d x^{6}} \neq 0 \text { or } \frac{d^{8} y}{d x^{8}} \neq 0 \text { etc } \\
& \text { then it is not a point of inflection }
\end{aligned}
$$

$e . g \cdot \frac{d^{3} y}{d x^{3}}=24$
when $x=-\frac{1}{2}, \frac{d^{3} y}{d x^{3}}=24 \neq 0$
\therefore there is a change in concavity
$\therefore\left(-\frac{1}{2}, 3\right)$ is a point of inflection

Exercise 10E; 1, 2bc, 3, 6ac, 7bd, 8, 10, 12, 14, 16, 18

