Tangent Theorems

(7) Assumption:

The size of the angle between a tangent and the radius drawn to the point of contact is 90 degrees.

$$
O X \perp X Y \quad \text { (radius } \perp \text { tangent) }
$$

Let x be the distance of the chord from the centre.

Let $2 y$ be the length of the chord.
$O X \perp Y Z \quad\binom{$ line joining centre to }{ midpoint, \perp to chord } As $x \rightarrow$ radius

$$
\mathrm{y} \rightarrow 0
$$

Tangent Theorems

(7) Assumption:

The size of the angle between a tangent and the radius drawn to the point of contact is 90 degrees.

$$
O X \perp X Y \quad \text { (radius } \perp \text { tangent) }
$$

Let x be the distance of the chord from the centre.

Let $2 y$ be the length of the chord.

$$
O X \perp Y Z \quad\binom{\text { line joining centre to }}{\text { midpoint, } \perp \text { to chord }}
$$ As $x \rightarrow$ radius

$$
\mathrm{y} \rightarrow 0
$$

(8) From any external point, two equal tangents may be drawn to a circle. The line joining this point to the centre is an axis of symmetry

$$
A T=B T \quad(\text { tangents from external point are }=\text {) }
$$

Prove: $A T=B T$

Proof: Join $O A, O B$ and $O T$
$\angle O A T=\angle O B T=90^{\circ} \quad$ (radius \perp tangent)
$O T$ is a common side

$$
\begin{aligned}
O A & =O B \\
\therefore \triangle O A T & \equiv \triangle O B T
\end{aligned}
$$

(= radii)
(RHS)
$\therefore A T=B T$
(matching sides in $\equiv \Delta^{\prime}$ s)

OTH is collinear

Exercise 9E; 1aceg, 2bdfh, 3ac, 4bd, 6bc, 9, 10ac, 12b, 14, 16a

