Alternate Segment

Theorem

(9) An angle formed by a tangent to a circle with a chord drawn to the point of contact is equal to any angle in the alternate segment.

$$
\angle B P X=\angle P A B
$$

(alternate segment theorem)

Prove: $\angle A P Y=\angle A B P$
Proof: Join $P O$ and produce to meet the circumference at Z Join $A Z$
$\angle Z P Y=90^{\circ} \quad$ (radius \perp tangent)
$\angle A P Z=90^{\circ}-\angle A P Y$
$\angle P A Z=90^{\circ}$
(\angle in semicircle)

$$
\begin{gathered}
\angle P A Z+\angle A Z P+\angle A P Z=180^{\circ} \quad(\angle \text { sum } \triangle A P Z) \\
90^{\circ}+\angle A Z P+90^{\circ}-\angle A P Y=180^{\circ} \\
\angle A Z P=\angle A P Y \\
\angle A Z P=\angle A B P \quad(\angle \text { 's in same segment }=)
\end{gathered}
$$

Exercise 9F; 2ace etc, 3bd, 4bd, 5b, 7b, 9b, 10b, 12, 14, 15b

