Locus Problems

Eliminate the parameter (get rid of the p 's and q 's)

We find the locus of a point.

(1) Find the coordinates of the point whose locus you are finding.
(2) Look for the relationship between the x and y values (i.e. get rid of the parameters)
a) Type 1: already no parameter in the x or y value.

$$
\text { e.g. }(p+q,-3)
$$

$$
\text { locus is } y=-3
$$

b) Type 2: obvious relationship between the values, usually only one parameter.

$$
\begin{array}{lll}
\text { e.g. }\left(6 t, t^{2}+1\right) & x=6 t & y=t^{2}+1 \\
& t=\frac{x}{6} & y=\frac{x^{2}}{36}+1 \\
\hline
\end{array}
$$

c) Type 3: not an obvious relationship between the values, use a previously proven relationship between the parameters.
e.g. $\left(p^{2}+q^{2}, p+q\right) \quad x=p^{2}+q^{2}$

Given that $p q=3=(p+q)^{2}-2 p q$

$$
x=y^{2}-6
$$

2005 Extension 1 HSC Q4c)

The points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$ The equation of the normal to the parabola at P is $x+p y=2 a p+a p^{3}$ and the equation of the normal at Q is given by $x+q y=2 a q+a q^{3}$
(i) Show that the normals at P and Q intersect at the point R whose coordinates are $\left\{-\operatorname{apq}(p+q), a\left(p^{2}+p q+q^{2}+2\right)\right\}$
(ii) The equation of the chord $P Q$ is $y=\frac{1}{2}(p+q) x-a p q$. If $P Q$ passes through $(0, a)$, show that $p q=-1$
(iii) Find the locus of R if $P Q$ passes through $(0, a)$

$$
\begin{aligned}
& x=-a p q(p+q) \\
& x=a(p+q) \\
& p+q=\frac{x}{a} \\
& y=a\left(p^{2}+p q+q^{2}+2\right) \\
& y=a\left((p+q)^{2}-p q+2\right) \\
& y=a\left(\frac{x^{2}}{a^{2}}+1+2\right) \\
& y=\frac{x^{2}}{a}+3 a \\
& \hline
\end{aligned}
$$

2004 Extension 1 HSC Q4b)

The two points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ are on the parabola $x^{2}=4 a y$
(i) The equation of the tangent to $x^{2}=4 a y$ at an arbitrary point $\left(2 a t, a t^{2}\right)$ on the parabola is $y=t x-a t^{2}$ Show that the tangents at the points P and Q meet at R, where R is the point $\{a(p+q), a p q\}$
(ii) As P varies, the point Q is chosen so that $\angle P O Q$ is a right angle, where O is the origin.
Find the locus of R.

$$
\begin{array}{cc}
m_{O P} \times m_{O Q}=-1 & \\
\frac{a p^{2}-0}{2 a p-0} \times \frac{a q^{2}-0}{2 a q-0}=-1 & y=a p q \\
a p^{2} q^{2}=-4 a^{2} p q & y=-4 a \\
p q=-4 &
\end{array}
$$

Exercise 9J; odds up to 23

