Polynomial Functions

A real polynomial P(x) of degree n is an expression of the form;

$$P(x) = p_0 + p_1 x + p_2 x^2 + \dots + p_{n-1} x^{n-1} + p_n x^n$$
where: $p_n \neq 0$

$$n \geq 0 \text{ and is an integer}$$

coefficients: $p_0, p_1, p_2, \dots, p_n$

<u>index (exponent):</u> the powers of the pronumerals.

<u>degree (order):</u> the highest index of the polynomial. The polynomial is called "polynomial of degree n"

leading term: $p_n x^n$

leading coefficient: p_n

monic polynomial: leading coefficient is equal to one.

$$P(x) = 0$$
: polynomial equation

$$y = P(x)$$
: polynomial function

roots: solutions to the polynomial equation P(x) = 0zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial.

e.g. (i) Which of the following are polynomials?

a)
$$5x^3 - 7x^{\frac{1}{2}} - 2$$
 NO, can't have fraction as a power

b)
$$\frac{4}{x^2+3}$$
 NO, can't have negative as a power $4(x^2+3)^{-1}$

e)
$$\frac{x^2+3}{4}$$
 YES, $\frac{1}{4}x^2+\frac{3}{4}$

c) $\frac{x^2 + 3}{4}$ YES, $\frac{1}{4}x^2 + \frac{3}{4}$ Exercise 4A; 1, 2acehi, 3bdf, 6bdf, 7, 9d, 10ad, 13

(ii) Determine whether $P(x) = x^3 (8x+1) + 7x - 11 - (2x^2 + 1)(4x^2 - 3)$ is monic and state its degree.

$$P(x) = 8x^{4} + x^{3} + 7x - 11 - 8x^{4} + 6x^{2} - 4x^{2} + 3$$

= $x^{3} + 2x^{2} + 7x - 8$: monic, degree = 3