Polynomial Functions

A real polynomial $P(x)$ of degree n is an expression of the form;

$$
\begin{aligned}
& P(x)=p_{0}+p_{1} x+p_{2} x^{2}+\ldots+p_{n-1} x^{n-1}+p_{n} x^{n} \\
& \text { where: } p_{n} \neq 0 \\
& \quad n \geq 0 \text { and is an integer }
\end{aligned}
$$

coefficients: $p_{0}, p_{1}, p_{2}, \cdots, p_{n}$
index (exponent): the powers of the pronumerals.
degree (order): the highest index of the polynomial. The polynomial is called "polynomial of degree \boldsymbol{n} "
leading term: $p_{n} x^{n}$
leading coefficient: p_{n}
monic polynomial: leading coefficient is equal to one.
$\underline{P(x)=0}$: polynomial equation $y=P(x)$: polynomial function
roots: solutions to the polynomial equation $P(x)=0$
zeros: the values of x that make polynomial $P(x)$ zero. i.e. the x intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
a) $5 x^{3}-7 x^{\left(\frac{1}{2}\right.}-2 \quad$ NO, can't have fraction as a power
b) $\frac{4}{x^{2}+3} \quad$ NO, can't have negative as a power $\quad 4\left(x^{2}+3\right)^{-1}$
c) $\frac{x^{2}+3}{4}$ YES, $\frac{1}{4} x^{2}+\frac{3}{4}$

Exercise 4A; 1, 2acehi, 3bdf, 6bdf, 7, 9d, 10ad, 13
d) $7 \quad$ YES, $7 x^{0}$
(ii) Determine whether $P(x)=x^{3}(8 x+1)+7 x-11-\left(2 x^{2}+1\right)\left(4 x^{2}-3\right)$ is monic and state its degree.

$$
\begin{aligned}
P(x) & =8 x^{4}+x^{3}+7 x-11-8 x^{4}+6 x^{2}-4 x^{2}+3 \\
& =x^{3}+2 x^{2}+7 x-8 \quad \therefore \text { monic, degree }=3
\end{aligned}
$$

