Polynomial Division

$$
P(x)=A(x) \times Q(x)+R(x)
$$

where;
$A(x)$ is the divisor $\quad Q(x)$ is the quotient
$R(x)$ is the remainder
Note:
degree $R(x)<$ degree $A(x)$
$\mathrm{Q}(x)$ and $R(x)$ are unique
1998 Extension 1 HSC Q2a)
Find the quotient, $Q(x)$, and the remainder, $R(x)$, when the polynomial $P(x)=x^{4}-x^{2}+1$ is divided by $x^{2}+1$

$$
\begin{array}{r}
x^{2}-2 \\
x ^ { 2 } + 1 \longdiv { x ^ { 4 } + 0 x ^ { 3 } - x ^ { 2 } + 0 x + 1 } \\
\frac{x^{4}+0 x^{3}+x^{2}}{3} \\
\frac{-2 x^{2}+0 x+1}{3} \\
\frac{-2 x^{2}+0 x-2}{3}
\end{array}
$$

$$
\therefore Q(x)=x^{2}-2 \quad \text { and } \quad R(x)=3
$$

(i) Divide the polynomial

1988 Extension 1 HSC Q4b)

$$
\begin{gathered}
f(x)=2 x^{4}-10 x^{3}+12 x^{2}+2 x-3 \text { by } g(x)=x^{2}-3 x+1 \\
x ^ { 2 } - 3 x + 1 \longdiv { 2 x ^ { 2 } - 4 x - 2 } \begin{array} { c }
{ \frac { 2 x ^ { 4 } - 1 0 x ^ { 3 } + 1 2 x ^ { 2 } + 2 x - 3 } { - 4 x ^ { 3 } + 1 0 x ^ { 2 } } + 2 x - 3 } \\
{ \frac { - 4 x ^ { 3 } + 1 2 x ^ { 2 } - 4 x } { - 2 x ^ { 2 } + 6 x - 3 } } \\
{ \frac { - 2 x ^ { 2 } + 6 x - 2 } { - 1 } }
\end{array}
\end{gathered}
$$

(ii) Hence write $f(x)=g(x) q(x)+r(x)$ where $q(x)$ and $r(x)$ are polynomials and $r(x)$ has degree less than 2.

$$
2 x^{4}-10 x^{3}+12 x^{2}+2 x-3=\left(x^{2}-3 x+1\right)\left(2 x^{2}-4 x-2\right)-1
$$

Further graphing of polynomials

Example: Sketch the graph of $y=x+\frac{8 x}{x^{2}-9}$, clearly indicating any asymptotes and any points where the graph meets the axes.

- vertical asymptotes at $x= \pm 3$
- oblique asymptote at $y=x$
- curve meets oblique asymptote at $8 x=0$

$$
x=0
$$

> Exercise 4C; 1c, 2bdfh, 3bd, 4ac, 6ace, 7b, 8, 11, 14*

