Mathematical Induction

Step 1: Prove the result is true for $n=1$ (or whatever the first term is)

Step 2: Assume the result is true for $n=k$, where k is a positive integer (or another condition that matches the question)

Step 3: Prove the result is true for $n=k+1$
NOTE: It is important to note in your conclusion that the result is true for $n=k+1$ if it is true for $\boldsymbol{n}=\boldsymbol{k}$

Step 4: Since the result is true for $n=1$, then the result is true for all positive integral values of n by induction
e.g.(i) $1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{1}{3} n(2 n-1)(2 n+1)$

Step 1: Prove the result is true for $n=1$

$$
\begin{aligned}
L H S=1^{2} \\
=1
\end{aligned} \quad \begin{aligned}
\text { RHS } & =\frac{1}{3}(1)(2-1)(2+1) \\
& =\frac{1}{3}(1)(1)(3) \\
& =1
\end{aligned}
$$

Hence the result is true for $n=1$
Step 2: Assume the result is true for $n=k$, where k is a positive integer
i.e. $1^{2}+3^{2}+5^{2}+\ldots+(2 k-1)^{2}=\frac{1}{3} k(2 k-1)(2 k+1)$

Step 3: Prove the result is true for $n=k+1$
i.e. Prove: $1^{2}+3^{2}+5^{2}+\ldots+(2 k+1)^{2}=\frac{1}{3}(k+1)(2 k+1)(2 k+3)$

Proof:

$$
\begin{aligned}
& 1^{2}+3^{2}+5^{2}+\ldots+(2 k+1)^{2} \\
= & 1^{2} \underbrace{3^{2}+5^{2}+\ldots+(2 k-1)^{2}}_{S_{k}}+\underbrace{(2 k+1)^{2}}_{T_{k+1}} \\
= & \frac{1}{3} k(2 k-1)(2 k+1)+(2 k+1)^{2} \\
= & (2 k+1)\left[\frac{1}{3} k(2 k-1)+(2 k+1)\right] \\
= & \frac{1}{3}(2 k+1)[k(2 k-1)+3(2 k+1)] \\
= & \frac{1}{3}(2 k+1)\left(2 k^{2}-k+6 k+3\right) \\
= & \frac{1}{3}(2 k+1)\left(2 k^{2}+5 k+3\right) \\
= & \frac{1}{3}(2 k+1)(k+1)(2 k+3)
\end{aligned}
$$

Hence the result is true for $n=k+1$ if it is also true for $n=k$

Step 4: Since the result is true for $n=1$, then the result is true for all positive integral values of n by induction

$$
\text { (ii) } \sum_{k=1}^{n} \frac{1}{(2 k-1)(2 k+1)}=\frac{n}{2 n+1}
$$

$$
\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}
$$

Step 1: Prove the result is true for $n=1$

$$
\begin{aligned}
\text { LHS } & =\frac{1}{1 \times 3} & R H S & =\frac{1}{2+1} \\
& =\frac{1}{3} & & =\frac{1}{3}
\end{aligned}
$$

$\therefore L H S=$ RHS
Hence the result is true for $n=1$
Step 2: Assume the result is true for $n=k$, where k is a positive integer

$$
\text { i.e. } \frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\ldots+\frac{1}{(2 k-1)(2 k+1)}=\frac{k}{2 k+1}
$$

Step 3: Prove the result is true for $n=k+1$

$$
\text { i.e. Prove : } \frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\ldots+\frac{1}{(2 k+1)(2 k+3)}=\frac{k+1}{2 k+3}
$$

Proof:

$$
\begin{aligned}
& \frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\ldots+\frac{1}{(2 k+1)(2 k+3)} \\
= & \frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\ldots+\frac{1}{(2 k-1)(2 k+1)}+\frac{1}{(2 k+1)(2 k+3)} \\
= & \frac{k}{2 k+1}+\frac{1}{(2 k+1)(2 k+3)} \\
= & \frac{k(2 k+3)+1}{(2 k+1)(2 k+3)} \\
= & \frac{2 k^{2}+3 k+1}{(2 k+1)(2 k+3)} \\
= & \frac{(2 k+1)(k+1)}{(2 k+1)(2 k+3)}
\end{aligned}
$$

$$
=\frac{(k+1)}{(2 k+3)}
$$

Hence the result is true for $n=k+1$ if it is also true for $n=k$
Step 4: Since the result is true for $n=1$, then the result is true for all positive integral values of n by induction

Exercise 6N; 1 ace etc, 10(polygon), 13

