Mathematical Induction

 e.g.(iii) Prove $n(n+1)(n+2)$ is divisible by 3Step 1: Prove the result is true for $n=1$
(1)(2)(3)
$=6 \quad$ which is divisible by 3 Hence the result is true for $n=1$
Step 2: Assume the result is true for $n=k$, where k is a positive integer
i.e. $k(k+1)(k+2)=3 P$, where P is an integer

Step 3: Prove the result is true for $n=k+1$
i.e. Prove: $(k+1)(k+2)(k+3)=3 Q$, where Q is an integer

Proof:

$$
\begin{aligned}
& (k+1)(k+2)(k+3) \\
= & k(k+1)(k+2)+3(k+1)(k+2) \\
= & 3 P+3(k+1)(k+2) \\
= & 3[P+(k+1)(k+2)] \\
= & 3 Q \text {, where } Q=P+(k+1)(k+2) \text { which is an integer }
\end{aligned}
$$

Hence the result is true for $n=k+1$ if it is also true for $n=k$

Step 4: Since the result is true for $n=1$, then the result is true for all positive integral values of n by induction.
(iv) Prove $3^{3 n}+2^{n+2}$ is divisible by 5

Step 1: Prove the result is true for $n=1$

$$
\begin{aligned}
& 3^{3}+2^{3} \\
= & 27+8
\end{aligned}
$$

$$
=35 \quad \text { which is divisible by } 5
$$

$$
\text { Hence the result is true for } n=1
$$

Step 2: Assume the result is true for $n=k$, where k is a positive integer

$$
\text { i.e. } 3^{3 k}+2^{k+2}=5 P \text {, where } P \text { is an integer }
$$

Step 3: Prove the result is true for $n=k+1$

$$
\text { i.e. Prove : } 3^{3 k+3}+2^{k+3}=5 Q \text {, where } Q \text { is an integer }
$$

Proof: $\quad 3^{3 k+3}+2^{k+3}$

$$
\begin{aligned}
& =27 \cdot 3^{3 k}+2^{k+3} \\
& =27\left(5 P-2^{k+2}\right)+2^{k+3} \\
& =135 P-27 \cdot 2^{k+2}+2^{k+3} \\
& =135 P-27 \cdot 2^{k+2}+2 \cdot 2^{k+2} \\
& =135 P-25 \cdot 2^{k+2} \\
& =5\left(27 P-5 \cdot 2^{k+2}\right) \\
& =5 Q \text { Exercise 6 } \\
& \text { Bbdf, 4 ab }(
\end{aligned}
$$

Hence the result is true for $n=k+1$ if it is also true for $n=k$
Step 4: Since the result is true for $n=1$, then the result is true for all positive integral values of n by induction.

