Mathematical Induction

e.g.(*iii*) Prove n(n+1)(n+2) is divisible by 3

<u>Step 1</u>: Prove the result is true for n = 1(1)(2)(3)

- = 6 which is divisible by 3 Hence the result is true for n = 1
- <u>Step 2</u>: Assume the result is true for n = k, where k is a positive integer

i.e. k(k+1)(k+2) = 3P, where *P* is an integer

<u>Step 3</u>: Prove the result is true for n = k + 1*i.e.* Prove : (k+1)(k+2)(k+3) = 3Q, where Q is an integer

Proof:

$$(k+1)(k+2)(k+3)$$

 $= k(k+1)(k+2) + 3(k+1)(k+2)$
 $= 3P + 3(k+1)(k+2)$
 $= 3[P + (k+1)(k+2)]$
 $= 3Q$, where $Q = P + (k+1)(k+2)$ which is an integer

Hence the result is true for n = k + 1 if it is also true for n = k

<u>Step 4</u>: Since the result is true for n = 1, then the result is true for all positive integral values of n by induction.

(*iv*) Prove $3^{3n} + 2^{n+2}$ is divisible by 5

<u>Step 1</u>: Prove the result is true for n = 1

$$3^3 + 2^3$$

= 27 + 8

= 35 which is divisible by 5 Hence the result is true for n = 1

Step 2: Assume the result is true for n = k, where k is a positive integer

i.e. $3^{3k} + 2^{k+2} = 5P$, where *P* is an integer

Step 3: Prove the result is true for n = k + 1

i.e. Prove : $3^{3k+3} + 2^{k+3} = 5Q$, where Q is an integer

Proof:
$$3^{3k+3} + 2^{k+3}$$

= $27 \cdot 3^{3k} + 2^{k+3}$
= $27(5P - 2^{k+2}) + 2^{k+3}$
= $135P - 27 \cdot 2^{k+2} + 2^{k+3}$
= $135P - 27 \cdot 2^{k+2} + 2 \cdot 2^{k+2}$
= $135P - 25 \cdot 2^{k+2}$
= $5(27P - 5 \cdot 2^{k+2})$
= $5Q$, where $Q = 27P - 5 \cdot 2^{k+2}$ which is an integer
Hence the result is true for $n = k + 1$ if it is also true for $n = k$

<u>Step 4</u>: Since the result is true for n = 1, then the result is true for all positive integral values of n by induction.