Mathematical Induction

 e.g.(v) Prove $2^{n}>n^{2}$ for $n>4$Step 1: Prove the result is true for $n=5$

$$
\begin{array}{rlr}
L H S= & 2^{5} \quad \begin{aligned}
R H S & =5^{2} \\
= & 32 \quad \therefore \quad=25
\end{aligned} \\
& \text { Hence the result is true for } n=5 \\
\hline
\end{array}
$$

Step 2: Assume the result is true for $n=k$, where k is a positive integer > 4
i.e. $2^{k}>k^{2}$

Step 3: Prove the result is true for $n=k+1$
i.e. Prove: $2^{k+1}>(k+1)^{2}$

Proof:

$$
\begin{array}{rlr}
2^{k+1} & =2 \cdot 2^{k} \\
& >2 k^{2} \\
& =k^{2}+k^{2} \\
& =k^{2}+k \times k & \\
& >k^{2}+4 k & (\because k>4) \\
& =k^{2}+2 k+2 k & \\
& >k^{2}+2 k+8 & (\because k>4) \\
& >k^{2}+2 k+1 & \\
& =(k+1)^{2} & \\
& \therefore 2^{k+1}>(k+1)^{2} &
\end{array}
$$

Exercise 6N; 6 abc, 8a, 15

Hence the result is true for $n=k+1$ if it is also true for $n=k$

Step 4: Since the result is true for $n=5$, then the result is true for all positive integral values of $n>4$ by induction .

