SYDNEYBOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2008
TRIAL
HIGHER SCHOOL CERTIFICATE

Mathematics

Extension 1

General Instructions

- Reading Time - 5 Minutes
- Working time - 2 Hours
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- Start each question in a new booklet

Examiner: R. Boros

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{2 x} \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, x>0
\end{aligned}
$$

Start each question in a new answer booklet.

Question 1 (12 marks).

Marks
a) Find the acute angle between the intersection of the curves $y=x^{2}+4$ and $y=x^{2}-2 x$, correct to the nearest minute.
b) A is the point $(-4,2)$ and B is the point $(3,-1)$. Find the coordinates of the point P which divides the interval $A B$ externally in the ratio 2 :1
c) Differentiate $y=\log _{e}\left(\sin ^{-1} x\right)$
d) Solve the inequality $\frac{x-1}{x+3} \geq-2$
e) If $\cos A=\frac{7}{9}$ and $\sin B=\frac{1}{3}$ where A and B are acute angles,

Prove that $A=2 B$.
f) Use the substitution $u=t+1$ to evaluate $\int_{0}^{1} \frac{t}{\sqrt{t+1}} d t$

End of Question 1.

Start a new booklet.

Question 2 (12 Marks).

Marks

a) The polynomial $P(x)=a x^{3}+b x^{2}-8 x+3$ has a factor of $(x-1)$ and leaves a remainder of 15 when divided by $(x+2)$. Find the values of a and b and hence fully factorise $P(x)$.
b) (i) Express $3 \sin \theta+2 \cos \theta$ in the form $R \sin (\theta+\alpha)$ where α is an acute angle.
(ii) Hence, or otherwise solve the equation $3 \sin \theta+2 \cos \theta=2.5$ for $0^{\circ} \leq \theta \leq 360^{\circ}$. Answer correct to the nearest minute.
c) A post $H D$ stands vertically at one corner of a rectangular field $A B C D$ The angle of elevation of the top of the post H from the nearest corners A and C are 45° and 30° respectively.

(i) If $A D=a$ units, find the length of BD in terms of a
(ii) Hence, find the angle of elevation of H from the corner B to the nearest minute.
d) Taking $x=\frac{-\pi}{6}$ as a first approximation to the root of the equation $2 x+\cos x=0$, use Newton's method once to show that a second approximation to the root of the equation is $\frac{-\pi-6 \sqrt{3}}{30}$.

End of Question 2.

Start a new booklet.

Question 3 (12 marks).

Marks

a)
Diagram not to scale.

$X Y$ is any chord of a circle. $X Y$ is produced to T and $T P$ is a tangent to the circle. The bisector of $\angle P T X$ meets $X P$ in M and cuts $P Y$ at L. Prove that $\triangle M P L$ is isosceles.
b) (i) Find the domain and range of $f^{-1}(x)=\sin ^{-1}(3 x-1)$.
(ii) Sketch the graph of $y=f^{-1}(x)$.
(iii) Find the equation representing the inverse function $f(x)$ and state the domain and range.
c) Newton's Law of Cooling states that the rate of cooling of a body is proportional to the excess of the temperature of a body above the surrounding temperature. This rate can be represented by the differential equation $\frac{d T}{d t}=-k\left(T-T_{0}\right)$, where T is the temperature of the body, T_{0} is the temperature of the surroundings, t is the time in minutes and k is a constant.
(i) Show that $T=T_{0}+A e^{-k t}$, where A is a constant, is a solution to the differential equation $\frac{d T}{d t}=-k\left(T-T_{0}\right)$.
(ii) A cup of coffee cools from $85^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ in one minute in a room temperature of $25^{\circ} \mathrm{C}$. Find the temperature of the cup of coffee after a further 4 minutes have elapsed. Answer to the nearest degree.

End of Question 3.

Start a new booklet.

Question 4 (12 marks).
a) Find the number of ways of seating 5 boys and 5 girls at a round table if:
(i) A particular girl wishes to sit between two particular boys.
(ii) Two particular persons do not wish to sit together.
b) $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ are the points on the parabola $x^{2}=4 a y$
$\xrightarrow{x^{2}=4 a y}$

It is given that the chord $P Q$ has the equation $y-\frac{1}{2}(p+q) x+a p q=0$
(i) Derive the equation of the tangent to the parabola $x^{2}=4 a y$ at the point $T\left(2 a t, a t^{2}\right)$.
(ii) The tangent at T cuts the y-axis at the point R. Find the coordinates of the point R.
(iii) If the chord $P Q$ passes through the point R show that p, t and q are terms of a geometric series.
c) A particle moves so that its distance $x \mathrm{~cm}$ from a fixed point O at time t seconds is $x=2 \cos 3 t$.
(i) Show that the particle satisfies the equation of motion $\ddot{x}=-n^{2} x$ where n is a constant.
(ii) What is the period of the motion?
(iii) What is the velocity when the particle is first 1 cm from O .

End of Question 4.

Start a new booklet.

Question 5 (12 marks).

Marks

a) Find the general solution of the equation $\tan \theta=\sin 2 \theta$
b) The cubic equation $2 x^{3}-x^{2}+x-1=0$ has roots α, β and γ. Evaluate
(i) $\alpha \beta+\beta \gamma+\alpha \gamma$

The equation $2 \cos ^{3} \theta-\cos ^{2} \theta+\cos \theta-1=0$ has roots $\cos a, \cos b$ and $\cos c$.
Using appropriate information from parts (i) and (ii), prove that $\sec a+\sec b+\sec c=1$.
c)
(i) Sketch the curve $y=2 \cos x-1$ for $-\pi \leq x \leq \pi$. Mark clearly where the graph crosses each axis.
(ii) Find the volume generated by the rotation through a complete revolution about the x axis of the region between the x-axis and that part of the curve $y=2 \cos x-1$ for which $|x| \leq \pi$ and $y \geq 0$

End of Question 5

Start a new booklet.

Question 6 (12 marks).

a)
(i) Find $\frac{d}{d y}(\ln \cos y)$.
(ii)

Show that the shaded area is given by $A=\frac{1}{2} \ln 2$ units 2
b) P, Q, R and S are four points taken in order on a circle. Prove that:

$$
\frac{P R}{Q S}=\frac{\sin P \hat{Q} R}{\sin Q \hat{P} S}
$$

Question 6 continued next page.

Question 6 continued

c)

A mould for a container is made by rotating the part of the curve $y=4-x^{2}$ which lies in the first quadrant through one complete revolution about the y axis. After sealing the base of the container, water is poured through a hole in the top. When the depth of water in the container is $h \mathrm{~cm}$, the depth is changing at a rate of $\frac{10}{\pi(4-h)} \mathrm{cms}^{-1}$.
(i) Show that when the depth is $h \mathrm{~cm}$, the surface area $S \mathrm{~cm}^{2}$ of the top of the water is given by $S=\pi(4-h)$.
(ii) Find the rate at which the surface area of the water is changing when the depth of the water is 2 cm .

End of Question 6.

Start a new booklet.

Question 7 (12 marks).

a) A softball player hits the ball from ground level with a speed of $20 \mathrm{~m} / \mathrm{s}$ and an angle of elevation α. It flies toward a high wall 20 m away on level ground. Taking the origin at the point where the ball is hit, the derived expressions for the horizontal and vertical components of x and y of displacement at the time t seconds, taking $g=10 \mathrm{~m} / \mathrm{s}^{2}$, are $x=20 t \cos \alpha$ and $y=-5 t^{2}+20 t \sin \alpha$

(i) Hence find the equation of the path of the ball in flight in terms of x, y and α.
(ii) Show that the height h at which the ball hits the wall is given by $h=20 \tan \alpha-5\left(1+\tan ^{2} \alpha\right)$
(iii) Using part (ii) above, show that the maximum value of h occurs when $\tan \alpha=2$ and find this maximum height

Question 7 continued next page.

Question 7 continued

b) A particle of unit mass moves in a straight line. It is placed at the origin on the x-axis and is then released from rest. When at position x, its acceleration is given by:

$$
-9 x+\frac{5}{(2-x)^{2}}
$$

Prove that the particle ultimately moves between two points on the x-axis and find these points.
c) (i) For any angles α and β show that

$$
\tan \alpha+\tan \beta=\tan (\alpha+\beta)[1-\tan \alpha \tan \beta]
$$

(ii) Prove, by mathematical induction, that

$$
\begin{gathered}
\tan \theta \tan 2 \theta+\tan 2 \theta \tan 3 \theta+\ldots+\tan n \theta \tan (n+1) \theta=\tan (n+1) \theta \cot \theta-(n+1) \\
\text { for all positive integers } n \\
\text { End of Question 7. } \\
\text { End of Examination. }
\end{gathered}
$$

This page is intentionally left blank

Question 1. $\left(x_{1}\right)$
(a) Faid the intenedioiss let $x^{2}+4=x^{2}-2 x$.

$$
\begin{aligned}
2 x & =-4 \\
x & =-2 .
\end{aligned}
$$

Aon $y=x^{2}+4 \quad \left\lvert\, \begin{aligned} & y=x^{2}-2 x \\ & y^{\prime}=2 x-2\end{aligned}\right.$

$$
\begin{aligned}
y^{\prime} & =v x \\
\therefore n_{1} & =-4 \quad \mid \eta_{2}^{\prime}=2 x-2 \\
\tan \theta & =\left|\frac{m_{1}-m r}{1+m, m v}\right| \\
& =\left|\frac{-4--6}{1+-4 x-6}\right| \\
& =\left|\frac{-4+6}{1+24}\right| \\
& \left.=\frac{2}{21^{\prime}} \right\rvert\, \\
\therefore \theta & =\operatorname{ta}^{-1} \frac{2}{25}=4^{0} 34
\end{aligned}
$$

(b)

$$
\begin{aligned}
\underset{B(-4,-1)}{\stackrel{A}{A}} \quad \begin{aligned}
-1 & \left.\left(\frac{2 \times 3+-1 x-4}{2+-1}\right), \frac{2 \times-1+-1 \times 2}{2+-1}\right) \\
& =(10,-4)
\end{aligned}
\end{aligned}
$$

(c) $y=\ln \left(\sin ^{-1} x\right)$

$$
\begin{aligned}
& y=\ln (\operatorname{sen} x) \\
& y^{\prime}=\frac{\frac{1}{\sqrt{1-x^{2}}}}{\sin ^{-1} x}
\end{aligned}=\frac{1}{\sin ^{-1} x, \sqrt{1-x^{2}}} .
$$

(d)

$$
\begin{aligned}
& \frac{x-1}{x+3} \geqslant-2 \\
& \frac{x-1}{x+3}+2 \geqslant 0 \\
& \frac{x-1+2(x+3)}{x+3} \geqslant 0 \\
& \frac{x-1+2 x+6}{x+3} \geqslant 0 \\
& \frac{3 x+5}{x+3} \geqslant 0 \\
& \frac{(3 x+5)}{(x+3)} \times(x+3)^{2} \geqslant 0 \\
& (3 x+5)(x+3) \geqslant 0 \\
& \therefore x<-3, x \geqslant-\frac{5}{3}
\end{aligned}
$$

(e)

$$
\begin{aligned}
\cos 2 B & =1-2 \sin ^{2} B \\
& =1-2 \times\left(\frac{1}{3}\right)^{2} \\
& =1-\frac{2}{9} \\
& =\frac{7}{9} \\
\therefore \cos 2 B & =\frac{7}{9}=\cos A \\
& A=2 B
\end{aligned}
$$

[NB baing chir queatiti on a calculats is not a piay]
(f) $\quad u=t+1$

$$
d u=d t
$$

$$
\begin{aligned}
\int_{0}^{1} \frac{t}{\sqrt{1+t}} d t & =\int_{1 / 2}^{2} \frac{\mu-1}{\sqrt{u}} d d u \\
& =\int^{2}\left(u^{2}-\mu^{-\frac{1}{v}}\right) d u \\
& =\left[\frac{2}{3} u^{3 / 2}-2 \mu^{2}\right]_{1}^{2}=\frac{2}{3} \cdot 2^{3 / 2}-2 \cdot 2^{\frac{1}{2}}-\left(\frac{2}{3}-2\right) \\
& =\frac{4 \sqrt{2}}{3}-2 \sqrt{2}-\frac{-4}{3}
\end{aligned}
$$

Question 2

$$
\begin{aligned}
& \text { a) } P(x)=a x^{3}+b x^{2}-8 x+3 \\
& P(1)=0 \\
& \therefore 0=a+b-8+3 \\
& a+b=5 \mid 1 \\
& P(-2)=15 \\
& 15=-8 a+4 b^{2}+16+3 \\
& 8 a-4 b=4 \text { (2) }
\end{aligned}
$$

(1) $\times 4$

$$
\begin{equation*}
4 a+4 b=20 \tag{3}
\end{equation*}
$$

2) $+(3)$

$$
12 a=24
$$

$$
a=2 \text { imark }
$$

subinto (1)

$$
2+b=5
$$

$$
b=3 \text { imark }
$$

$$
\begin{array}{r}
\therefore P(x)=2 x^{3}+3 x^{2}-8 x+3 \\
\frac{2 x^{2}+5 x-3}{2 x^{3}+3 x^{2}-8 x+3} \\
\frac{2 x^{3}-2 x^{2}}{5 x^{2}-8 x+3} \\
\frac{5 x^{2}+5 x}{-3 x+3} \\
-3 x+3 \\
0
\end{array}
$$

$$
\begin{aligned}
& 2 x^{2}+5 x-3^{-6} \\
= & \frac{(2 x+6)(2 x-1)}{2} \\
= & \frac{2(x+3)(2 x-1)}{2}
\end{aligned}
$$

$$
\therefore P(x)=(x-1)(x+3)(2 x-1)
$$

$$
1 \text { mark }
$$

$$
\text { b) } i 3 \sin \theta+2 \cos \theta
$$

$$
=R \sin (\theta+\alpha)
$$

$$
R=\sqrt{3^{2}+2^{2}}
$$

$$
=\sqrt{13} 1 \text { mark }
$$

ii $\sqrt{13} \sin \left(\theta+33^{\circ} 41^{\prime}\right)=\frac{5}{2}$
$\sin \left(\theta+33^{\circ} 41^{\prime}\right)=\frac{5}{2 \sqrt{13}}$
$\theta+33^{\circ} 41^{\prime}=\sin ^{-1} \frac{5}{2 \sqrt{13}}$

$$
\theta=\sin ^{-1} \frac{5}{2 \sqrt{3}}-33^{\circ} 41^{\prime}
$$

$$
\begin{gathered}
\theta=1013^{\prime}, 102^{\circ} 25^{\prime} \\
1 \text { mark each }
\end{gathered}
$$

c)

i) $\angle A H D=45^{\circ}$
$\therefore \triangle A H D$ is isosceles

$$
\therefore H O=a
$$

In \triangle 'SHOD $+D B A$

$$
H D=a=D A
$$

$$
\angle H D C=90^{\circ}=\angle D A B
$$

(given a properties of a rectangle)
$D C=A B$ (opposite sides
of a rectangle)

$$
\begin{aligned}
\therefore \triangle H C D \equiv & \triangle P B A(S A S) \\
\therefore \angle D B A= & 30^{\circ} \\
& \text { mark }
\end{aligned}
$$

in $\triangle O A B$

$$
\sin 30=\frac{a}{B O}
$$

$$
\begin{aligned}
1 / 2 & =a / B D \\
\therefore \quad B D & =2 a \\
& \frac{1 \text { mark }}{}
\end{aligned}
$$

ii) $\triangle H D B$

MAMHE EXT 1 TH5c 2000
Questiom 3:

$a=b$ (TM bisects<PTx, given)
$x=y$ (a iternate regmeont theorem)
$z=a+c($ exterior $<$ of $\Delta P L T)$

$$
=b+y
$$

$$
\therefore z=w
$$

$\therefore \Delta P L M$ is isorceles (bawe ang lej ajual)
(b) (i) $f^{-1}(x)=\sin ^{-1}(3 x-1)$

Domaim: $\quad-1 \leqslant 3 x-1 \leqslant 1$

$$
0 \leqslant 3 x \leqslant 2
$$

$$
\begin{equation*}
0 \leq x \leq \frac{2}{3} \tag{2}
\end{equation*}
$$

Range: $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
(ii)

(iii)

$$
\begin{aligned}
& x=\sin { }^{-1}(3 y-1) \\
& \sin x=3 y-1 \\
& 3 y=\sin x+1 \\
& y=\frac{3}{3}(\sin x+1) \\
& f(x)=\frac{1}{3}(\sin x+1)
\end{aligned}
$$

Domain: $-\frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{x}$
Range: $0 \leq y \leq \frac{2}{3}$
(c) (i)

$$
\begin{align*}
\frac{d T}{d t} & =\frac{d}{d k}\left(T_{0}+A e^{-k t}\right) \\
& =A e^{-k t} \times-k \\
& =\left(T-T_{0}\right) x-k \\
& =-k\left(T-T_{0}\right) \tag{1}
\end{align*}
$$

(in) Whem $t=0: T=85^{\circ}$

$$
\begin{gathered}
\therefore 85=25+A \\
\therefore A=60 \\
\therefore T=25+60 e^{-k t}
\end{gathered}
$$

When $t=1: 80=25+60 e^{-k}$

$$
\begin{aligned}
\therefore 55 & =60 e^{-k} \\
\therefore 2^{-k} & =\frac{55}{60} \\
k & =-\operatorname{kn}\left(\frac{55}{60}\right)
\end{aligned}
$$

Whan $t=5: T=25+60 e^{-5 k}$

$$
\begin{align*}
& =63.9336 \\
& =64 \tag{2}
\end{align*}
$$

Question 5.
(a)

$$
\begin{aligned}
& \frac{\sin \theta}{\cos \theta}=2 \sin \theta \cos \theta \\
& \sin \theta=2 \sin \theta \cos ^{2} \theta . \\
& 2 \sin \theta\left(1-\sin ^{2} \theta\right)-\sin \theta=0 . \\
& 2 \sin ^{3} \theta-\sin \theta=0 . \\
& \sin \theta\left(2 \sin ^{2} \theta-1\right)=0 . \\
& \sin \theta=0 \\
& \theta=\bar{N}_{n} \quad n \in \mathbb{Z}
\end{aligned} \quad \sin \theta= \pm \frac{1}{\sqrt{2}} .
$$

(b) $(i) \alpha \beta+\beta r+\alpha \gamma=\frac{1}{2}$.
(ii) $\alpha \beta \gamma=\frac{1}{2}$.

$$
\begin{aligned}
\frac{1}{\cos a}+\frac{1}{\cos b}+\frac{1}{\cos c} & =\frac{\cos a \cos b+\cos a \cos c+\cos b \cos c}{\cos a \cos b \cos c .} \\
& =\frac{\frac{1}{2}}{\frac{1}{2}} \\
& =1
\end{aligned}
$$

(c) (i)

$$
\begin{gathered}
2 \cos x-1=0 \\
\cos x=\frac{1}{2} \\
x= \pm \frac{\pi}{3} .
\end{gathered}
$$

(iii)

$$
\begin{aligned}
V & =\pi \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} 4 \cos ^{2} x-4 \cos x+1 d x \\
& =\pi \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} 2 \cos 2 x+2-4 \cos x+1 d x \\
& =\pi[\sin 2 x-4 \sin x+3 x]_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \\
& =2 \pi\left(\sin \frac{2 \pi}{3}-4 \sin \frac{\pi}{3}+\pi\right) . \\
& =2 \pi^{2}-3 \pi \sqrt{3} . \sin ^{3} .
\end{aligned}
$$

Question 6
a) i)

$$
\begin{aligned}
\frac{d(\ln \cos y)}{d y} & =\frac{-\sin y}{\cos y} \\
& =-\tan y
\end{aligned}
$$

ii)

$$
\begin{aligned}
A & =\int_{0}^{\frac{\pi}{4}} x d y \\
& =\int_{0}^{\frac{\pi}{4}} \tan y d y \\
& =-\int_{0}^{\frac{\pi}{4}}-\tan y d y \\
& =-[\ln (\cos y)]_{0}^{\frac{\pi}{4}} \text { using }(i) \\
& =-\left(\ln \left(\cos \frac{\pi}{4}\right)-\ln (\cos 0)\right) \\
& \left.=-\ln \left(\frac{1}{\sqrt{2}}\right)+\ln \right) \\
& =-\ln (2)^{-\frac{1}{2}} \\
& =\frac{1}{2} \ln 2 \text { units }^{2}
\end{aligned}
$$

b)

$\ln \triangle P Q R$

$$
\begin{aligned}
& \frac{\sin P \hat{Q} R}{P R}=\frac{\sin \hat{Q} \hat{R} P}{P Q} \\
& \ln \triangle Q P S \\
& \frac{\sin Q \hat{P} S}{Q S}=\frac{\sin P \hat{S} Q}{P Q}
\end{aligned}
$$

$\hat{Q R P}=\hat{P} Q \quad$ (angles in same segment (arc $P Q)$)

$$
\begin{aligned}
\therefore \quad & \frac{\sin \hat{P Q R}}{P R}=\frac{\sin Q \hat{P S}}{Q S} \\
& \frac{\sin P \hat{Q R}}{\sin Q \hat{P} S}=\frac{P R}{Q S}
\end{aligned}
$$

i)

$$
\begin{aligned}
& S=\pi r^{2} \\
& S=\pi x^{2}
\end{aligned}
$$

when $y=h$

$$
\begin{aligned}
& h=4-x^{2} \\
& x^{2}=4-h
\end{aligned}
$$

$$
\therefore \quad S=\pi(4-h)
$$

ii)

$$
\begin{aligned}
S & =4 \pi-\pi h \\
\frac{d S}{d h} & =-\pi \\
\frac{d S}{d t} & =\frac{d S}{d h} \times \frac{d h}{d t} \\
& =-\pi \times \frac{10}{\pi(4-h)} \\
& =-\frac{10}{4-h}
\end{aligned}
$$

when $h=2$

$$
\begin{aligned}
\frac{d s}{d t} & =-\frac{10}{(4-2)} \\
& =-5 \quad \mathrm{~cm}^{2} / \mathrm{s}
\end{aligned}
$$

(a) $x=20 t \cos \alpha$ QUESTION 7

$$
\begin{aligned}
& \text { (i) } y=-5 t^{2}+20 t \sin \alpha \\
& \Rightarrow y=-5\left(\frac{x}{20 \cos \alpha}\right)^{2}+20\left(\frac{x}{20 \cos \alpha}\right) \sin \alpha \\
& y=-\frac{1}{80} x^{2} \sec ^{2} \alpha+x \tan \alpha \\
& \text { ie } y=-\frac{1}{80}\left(\tan ^{2} \alpha+1\right) x^{2}+(\tan \alpha) x
\end{aligned}
$$

(ii) When $x=20, y=h$

$$
\Rightarrow h=-\frac{1}{80}\left(\tan ^{2} \alpha+1\right) 400+20 \tan \alpha
$$

$$
\text { ie } h=-5 \tan ^{2} \alpha+20 \tan \alpha-5
$$

$$
h=20 \tan \alpha-5\left(1+\tan ^{2} \alpha\right)
$$

(iii)

$$
h=-5 \tan ^{2} \alpha+20 \tan \alpha-5
$$

Max. value of h occurs
when $\tan \alpha=\frac{-20}{2(-5)}=2$
i) $\tan \alpha=2$

Max height is

$$
-5(2)^{2}+20(2)-5=15 \text { metres }
$$

(b)

$$
\text { b) } \begin{aligned}
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =-9 x+5(x-2)^{-2} \\
\frac{1}{2} v^{2} & =-\frac{9 x^{2}}{2}+\frac{5}{2-x}+c \\
\left.\begin{array}{rl}
x=0 \\
v=0
\end{array}\right\} \Rightarrow c & =-\frac{5}{2} \\
\therefore v^{2} & =-9 x^{2}+\frac{5}{2-x}-5
\end{aligned}
$$

(b) $\left(\right.$ add $v^{2}=-9 x^{2}+\frac{10}{2-x}-5$

For motion to exist then

$$
v^{2} \geq 0
$$

$$
\text { ie }-9 x^{2}+\frac{10}{2-x}-5 \geq 0
$$

$$
-9 x^{2}(2-x)^{2}+10(2-x)-5(2-x)^{2} \geq 0
$$

$$
(2-x)\left[-9 x^{2}(2-x)+10-5(2-x)\right]=0
$$

ie $(2-x)\left(-18 x^{2}+9 x^{3}+5 x\right) \geq 0$
i $(2-x) \cdot x\left(9 x^{2}-18 x+5\right) \geq 0$
$x(2-x)(3 x-5)(3 x-1) \geq 0$

However since particle starts at zero and changes direction at $x=\frac{1}{3}$ it can never be outside the interval $0 \leq x \leq \frac{1}{3}$. Note For $\frac{1}{3}<x<\frac{5}{3} \quad v^{2}<0$
\therefore impossible to move in this interval and therefore cannot move in $\frac{5}{3} \leqslant x \leqslant 2$.

Ultimately moves in interval $0 \leq x \leq \frac{1}{3}$

