Applications of Calculus To The Physical World

Displacement (x)
Distance from a point, with direction.
Velocity $\left(v, \frac{d x}{d t}, \dot{x}\right)$
The rate of change of displacement with respect to time i.e. speed with direction.
Acceleration $\left(a, \frac{d v}{d t}, \frac{d^{2} x}{d t^{2}}, \ddot{x}, \dot{v}\right)$
The rate of change of velocity with respect to time
NOTE: "deceleration" or slowing down is when acceleration is in the opposite direction to velocity.

e.g. (i) distance traveled $=7 \mathrm{~m}$
(ii) total displacement $=-1 \mathrm{~m}$
(iii) average speed $=\frac{7}{4} \mathrm{~m} / \mathrm{s}$
(iv) average velocity $=\frac{-1}{4} \mathrm{~m} / \mathrm{s}$
e.g. (i) The displacement x from the origin at time t seconds, of a particle traveling in a straight line is given by the formula

$$
x=t^{3}-21 t^{2}
$$

a) Find the acceleration of the particle at time t.

$$
\begin{aligned}
& x=t^{3}-21 t^{2} \\
& v=3 t^{2}-42 t \\
& a=6 t-42
\end{aligned}
$$

b) Find the times when the particle is stationary.

Particle is stationary when $v=0$

$$
\begin{gathered}
\text { i.e. } 3 t^{2}-42 t=0 \\
3 t(t-14)=0 \\
t=0 \text { or } t=14
\end{gathered}
$$

Particle is stationary initially and again after 14 seconds
(ii) A particle is moving on the x axis. It started from rest at $t=0$ from the point $x=7$.
If its acceleration at time t is $2+6 t$ find the position of the particle when $t=3$.

$$
\begin{aligned}
& a=2+6 t \\
& \quad v=2 t+3 t^{2}+c \\
& \text { when } t=0, v=0 \\
& \text { i.e. } 0=0+0+c \\
& \qquad c=0 \\
& \therefore \quad v=2 t+3 t^{2} \\
& \quad x=t^{2}+t^{3}+c \\
& \text { when } t=0, x=7 \\
& \text { i.e. } 7=0+0+c \\
& \quad c=7 \\
& \therefore x=t^{2}+t^{3}+7
\end{aligned}
$$

$$
\text { when } \begin{aligned}
t=3, x & =3^{2}+3^{3}+7 \\
& =43
\end{aligned}
$$

after 3 seconds the particle is 43 units to the right of O.

e.g. 2001 HSC Question 7c)

A particle moves in a straight line so that its displacement, in metres, is given by

$$
x=\frac{t-2}{t+2}
$$

where t is measured in seconds.
(i) What is the displacement when $t=0$?

$$
\text { when } \begin{aligned}
t=0, x & =\frac{0-2}{0+2} \\
& =-1
\end{aligned}
$$

\therefore the particle is 1 metre to the left of the origin
(ii) Show that $x=1-\frac{4}{t+2}$

Hence find expressions for the velocity and the acceleration in terms of t.

$$
\left.\begin{array}{rlrl}
1-\frac{4}{t+2} & =\frac{t+2-4}{t+2} & v=-\frac{4(-1)}{(t+2)^{2}} & a=\frac{4 \times-2(t+2)^{1}(1)}{(t+2)^{4}} \\
& =\frac{t-2}{t+2} \quad \therefore x=1-\frac{4}{t+2} & & v=\frac{4}{(t+2)^{2}}
\end{array} \quad a=\frac{-8}{(t+2)^{3}}\right)
$$

(iii) Is the particle ever at rest? Give reasons for your answer.

$$
v=\frac{4}{(t+2)^{2}} \neq 0
$$

\therefore the particle is never at rest
(iv) What is the limiting velocity of the particle as t increases indefinitely?

$$
\begin{aligned}
\lim _{t \rightarrow \infty} v & =\lim _{t \rightarrow \infty} \frac{4}{(t+2)^{2}} \quad \text { OR } \\
& =0
\end{aligned}
$$

\therefore the limiting velocity of the particle is $0 \mathrm{~m} / \mathrm{s}$
(ii) 2002 HSC Question 8b)

A particle moves in a straight line. At time t seconds, its distance x metres from a fixed point O in the line is given by $x=\sin 2 t+3$
(i) Sketch the graph of x as a function of t for $0 \leq t \leq 2 \pi$

$$
\begin{aligned}
\text { amplitude }=1 \text { unit } & \text { period } & =\frac{2 \pi}{2} & \text { divisions }=\frac{\pi}{4} \\
\text { shift }=\uparrow 3 \text { units } & & =\pi &
\end{aligned}
$$

(ii) Using your graph, or otherwise, find the times when the particle is at rest, and the position of the particle at those times.

Particle is at rest when velocity $=0$

$$
\frac{d x}{d t}=0 \quad \text { i.e. the stationary points }
$$

$$
\text { when } t=\frac{\pi}{4} \text { seconds, } x=4 \text { metres }
$$

$$
t=\frac{3 \pi}{4} \text { seconds, } x=2 \text { metres }
$$

$$
\begin{aligned}
& t=\frac{5 \pi}{4} \text { seconds, } x=4 \text { metres } \\
& t=\frac{7 \pi}{4} \text { seconds, } x=2 \text { metres } \\
& \hline
\end{aligned}
$$

(iii) Describe the motion completely.

The particle oscillates between $x=2$ and $x=4$ with a period of π seconds

Exercise 3B; 2, 4, 6, 8, 10, 12

