Chord of Contact

From an external point T, two tangents may be drawn.
tangent at P has equation $\frac{x_{1} x}{a^{2}}+\frac{y_{1} y}{b^{2}}=1$
tangent at Q has equation $\frac{x_{2} x}{a^{2}}+\frac{y_{2} y}{b^{2}}=1$
Now T lies on both lines,

$$
\therefore \frac{x_{1} x_{0}}{a^{2}}+\frac{y_{1} y_{0}}{b^{2}}=1 \quad \text { and } \quad \frac{x_{2} x_{0}}{a^{2}}+\frac{y_{2} y_{0}}{b^{2}}=1
$$

Thus P and Q both must lie on a line with equation;

$$
\frac{x_{0} x}{a^{2}}+\frac{y_{0} y}{b^{2}}=1
$$

which must be the line $P Q$ i.e. chord of contact
Similarly the chord of contact of the hyperbola has the equation;

$$
\frac{x_{0} x}{a^{2}}-\frac{y_{0} y}{b^{2}}=1
$$

Rectangular Hyperbola

1) Show that equation $P Q$ is $x+p q y=c(p+q) \ldots .$. (1)
2) Show that T has coordinates $\left\{\frac{2 c p q}{p+q}, \frac{2 c}{p+q}\right\}$
$\therefore x_{0}=\frac{2 c p q}{p+q} \quad y_{0}=\frac{2 c}{p+q}$
Substituting into (1); $x+\frac{(p+q) x_{0}}{2 c} y=c(p+q)$

$$
x+\frac{2 c x_{0}}{2 c y_{0}} y=\frac{2 c^{2}}{y_{0}} \quad x y_{0}+x_{0} y=2 c^{2}
$$

Geometric Properties

(1) The chord of contact from a point on the directrix is a focal chord.

ellipse

As T is on the directrix it has coordinates $\left(\frac{a}{e}, y_{0}\right)$ i.e. $x_{0}=\frac{a}{e}$
\therefore chord of contact will have the equation;

Substitute in focus ($a e, 0$)

$$
\begin{aligned}
\frac{x\left(\frac{a}{e}\right)}{a^{2}}+\frac{y y_{0}}{b^{2}} & =1 \\
\frac{x}{a e}+\frac{y y_{0}}{b^{2}} & =1
\end{aligned}
$$

$$
\begin{aligned}
\frac{a e}{a e}+0 & =1+0 \\
& =1
\end{aligned}
$$

\therefore focus lies on chord of contact
i.e. it is a focal chord
(2) That part of the tangent between the point of contact and the directrix subtends a right angle at the corresponding focus.

$$
\text { Prove: } \angle P S T=90^{\circ}
$$

equation of tangent is $\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1$
when $x=\frac{a}{e} e^{\frac{a}{e} \cos \theta}+\frac{y \sin \theta}{b}=1$

when $x=\frac{a}{e}, \frac{e}{a}+\frac{y \sin \theta}{b}=1$

$$
\frac{\cos \theta}{e}+\frac{y \sin \theta}{b}=1
$$

$$
\begin{array}{rlrl}
\frac{y \sin \theta}{b} & =\frac{e-\cos \theta}{e} \\
y & =\frac{b(e-\cos \theta)}{e \sin \theta} & \therefore T\left(\frac{a}{e}, \frac{b(e-\cos \theta)}{e \sin \theta}\right)
\end{array}
$$

$$
m_{P S} \times m_{T S}=\frac{b \sin \theta}{a(\cos \theta-e)} \times \frac{a(e-\cos \theta)}{b \sin \theta} \quad \therefore \angle P S T=90^{\circ}
$$

$$
=-1
$$

$$
\begin{aligned}
& m_{P S}=\frac{b \sin \theta-0}{a \cos \theta-a e} \\
& =\frac{b \sin \theta}{a(\cos \theta-e)} \\
& m_{T S}=\frac{\frac{b(e-\cos \theta)}{e \sin \theta}-0}{\frac{a}{e}-a e} \\
& =\frac{b(e-\cos \theta)}{e \sin \theta} \times \frac{e}{a-a e^{2}} \\
& =\frac{b(e-\cos \theta)}{a\left(1-e^{2}\right) \sin \theta} \\
& =\frac{b(e-\cos \theta)}{\frac{a^{2}\left(1-e^{2}\right)}{a} \sin \theta} \\
& =\frac{a(e-\cos \theta)}{b \sin \theta}
\end{aligned}
$$

(3) Reflection Property

 Tangent to an ellipse at a point P on it is equally inclined to the focal chords through P.Prove: $\angle S P T=\angle S^{\prime} P T^{\prime} \downarrow$

Construct a line $\| y$ axis passing through P

$$
\begin{aligned}
& \frac{P T}{P T^{\prime}}=\frac{P N}{P N^{\prime}} \quad \text { (ratio of intercepts of } \| \text { lines) } \\
& \therefore \frac{P T}{P N}=\frac{P T^{\prime}}{P N^{\prime}}
\end{aligned}
$$

$$
\begin{gathered}
e P N=P S \quad \text { and } \quad e P N^{\prime}=P S^{\prime} \\
\therefore \frac{P T}{\frac{P S}{e}}=\frac{P T^{\prime}}{P S^{\prime}} \frac{e}{P S}=\frac{P T^{\prime}}{P S^{\prime}} \\
\frac{P T}{P} \quad \angle P S T=\angle P S^{\prime} T^{\prime}=90^{\circ} \quad \text { (proven in property (2)) } \\
\therefore \sec \angle S P T=\sec \angle S^{\prime} P T^{\prime} \\
\angle S P T=\angle S^{\prime} P T^{\prime}
\end{gathered}
$$

e.g. Find the cartesian equation of $|z+2|+|z-2|=8$

The sum of the focal lengths of an ellipse is constant

$$
\begin{aligned}
2 a=8 \\
a=4
\end{aligned} \begin{array}{rlr}
a e & =2 & b^{2}
\end{array}=a^{2}\left(1-e^{2}\right) ~ 子 ~ b^{2}=16\left(1-\frac{1}{4}\right)
$$

Exercise 6E; 1, 2, 4, 7, 8, 10

Exercise 4N; 1 l,m,n

Komarami Unit 4

