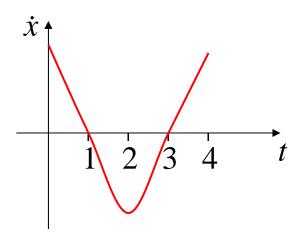
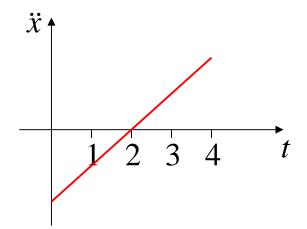
Integrating Functions of Time



change in displacement =
$$\int_{0}^{4} \dot{x}dt$$

change in distance = $\int_{0}^{1} \dot{x}dt - \int_{1}^{3} \dot{x}dt + \int_{3}^{4} \dot{x}dt$



change in velocity =
$$\int_{0}^{4} \ddot{x}dt$$
change in speed =
$$-\int_{0}^{2} \ddot{x}dt + \int_{2}^{4} \ddot{x}dt$$

Derivative Graphs

Function displacement	1 st derivative <i>velocity</i>	2 nd derivative <i>acceleration</i>		
stationary point	x intercept			
inflection point	stationary point	x intercept		
increasing	positive			
decreasing	negative			
concave up	increasing	positive		
concave down	decreasing	negative		

graph type	integrate	differentiate	
horizontal line	oblique line	x axis	
oblique line	parabola	horizontal line	
parabola	cubic	oblique line	
	inflects at turning pt		

Remember:

- integration = area
- on a velocity graph, total area = distance total integral = displacement
- on an acceleration graph, total area = speed total integral = velocity

(ii) 2003 HSC Question 7b)

The velocity of a particle is given by $v = 2 - 4\cos t$ for $0 \le t \le 2\pi$, where v is measured in metres per second and t is measured in seconds

(i) At what times during this period is the particle at rest?

$$v = 0$$

$$2 - 4\cos t = 0$$

$$\cos t = \frac{1}{2}$$

$$\alpha = \frac{\pi}{3}$$

$$v = 0$$

$$\cos \alpha = \frac{1}{2}$$

$$t = \alpha, 2\pi - \alpha$$

$$t = \frac{\pi}{3}, \frac{5\pi}{3}$$

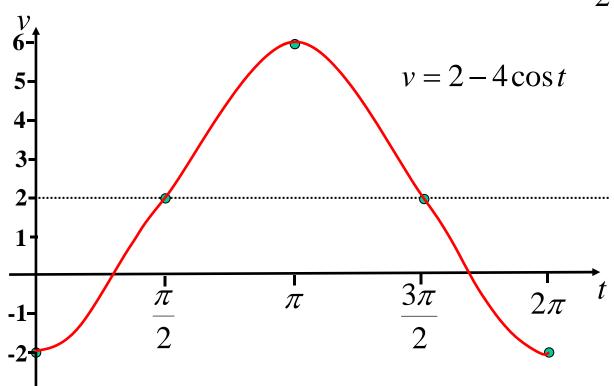
- \therefore particle is at rest after $\frac{\pi}{3}$ seconds and again after $\frac{5\pi}{3}$ seconds
- (ii) What is the maximum velocity of the particle during this period?

$$-4 \le -4\cos t \le 4$$
$$-2 \le 2 - 4\cos t \le 6$$

: maximum velocity is 6 m/s

(iii) Sketch the graph of v as a function of t for $0 \le t \le 2\pi$

amplitude = 4 units period = $\frac{2\pi}{1}$ divisions = $\frac{2\pi}{4}$ shift = $\uparrow 2$ units = 2π flip upside down = $\pi = \frac{2\pi}{2}$



(iv) Calculate the total distance travelled by the particle between t=0 and $t=\pi$

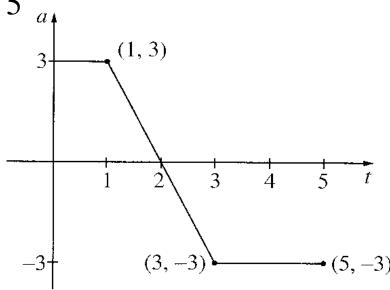
and
$$t = \pi$$

distance $= -\int_{0}^{\frac{\pi}{3}} (2 - 4\cos t) dt + \int_{0}^{\pi} (2 - 4\cos t) dt$
 $= \left[2t - 4\sin t\right]_{\frac{\pi}{3}}^{0} + \left[2t - \frac{\pi}{3} + \sin t\right]_{\frac{\pi}{3}}^{\pi}$
 $= (0 - 0) + (2\pi - 4\sin \pi) - 2\left(\frac{2\pi}{3} - 4\sin\frac{\pi}{3}\right)$
 $= 2\pi - 2\left(\frac{2\pi}{3} - \frac{4\sqrt{3}}{2}\right)$

$$=4\sqrt{3}+\frac{2\pi}{3}$$
 metres

(iii) 2004 HSC Question 9b)

A particle moves along the *x*-axis. Initially it is at rest at the origin. The graph shows the acceleration, a, of the particle as a function of time t for $0 \le t \le 5$

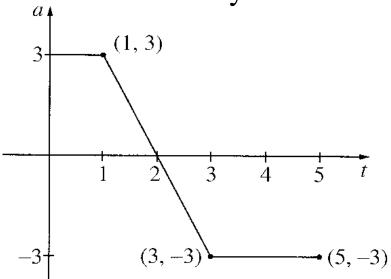


(i) Write down the time at which the velocity of the particle is a maximum

$$v = \int adt$$
 OR v is a maximum when $\frac{dv}{dt} = 0$ $\int adt$ is a maximum when $t = 2$

 \therefore velocity is a maximum when t = 2 seconds

(ii) At what time during the interval $0 \le t \le 5$ is the particle furthest from the origin? Give reasons for your answer.



Question is asking, "when is displacement a maximum?"

x is a maximum when
$$\frac{dx}{dt} = 0$$

But
$$v = \int a dt$$

$$\therefore$$
 We must solve $\int adt = 0$

i.e. when is area above the axis = area below

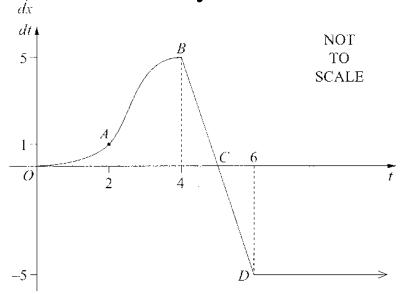
By symmetry this would be at t = 4

 \therefore particle is furthest from the origin at t = 4 seconds

(*iv*) **2007 HSC Question 10a**)

An object is moving on the x-axis. The graph shows the velocity, $\frac{dt}{dt}$, of the object, as a function of t.

The coordinates of the points shown on the graph are A(2,1), B(4,5), C(5,0) and D(6,-5). The velocity is constant for $t \ge 6$



(i) Using Simpson's rule, estimate the distance travelled between t = 0

and t = 4

	1	4	1	
t	0	2	4	
ν	0	1	5	

distance
$$\approx \frac{h}{3} \{ y_0 + 4y_{odd} + 2y_{even} + y_n \}$$

= $\frac{2}{3} \{ 0 + 4(1) + 5 \}$
= 6 metres

(ii) The object is initially at the origin. During which time(s) is the displacement decreasing?

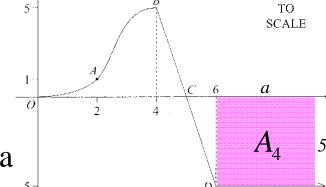
x is decreasing when
$$\frac{dx}{dt} < 0$$

- \therefore displacement is decreasing when t > 5 seconds
- (iii) Estimate the time at which the object returns to the origin. Justify your answer.

Question is asking, "when is displacement = 0?"

But
$$x = \int v dt$$

 \therefore We must solve $\int v dt = 0$



NOT

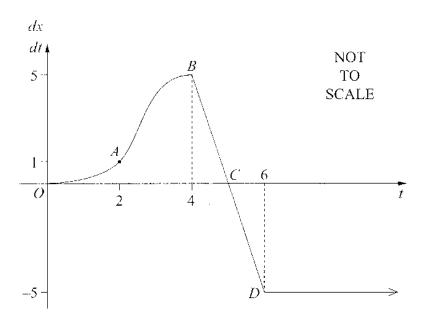
i.e. when is area above the axis = area below By symmetry, area from t = 4 to 5 equals area from t = 5 to 6

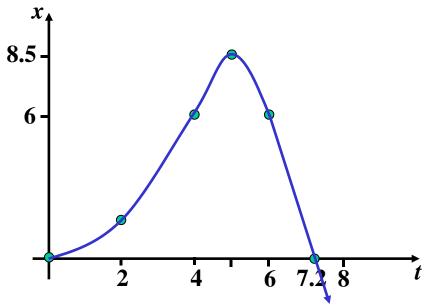
In part (i) we estimated area from t = 0 to 4 to be 6,

$$\therefore A_4 = 6 \qquad a = 1.2$$

$$5a = 6$$
 : particle returns to the origin when $t = 7.2$ seconds

(iv) Sketch the displacement, x, as a function of time.





object is initially at the origin when t = 4, x = 6

by symmetry of areas t = 6, x = 6

Area of triangle = 2.5

: when t = 5, x = 8.5

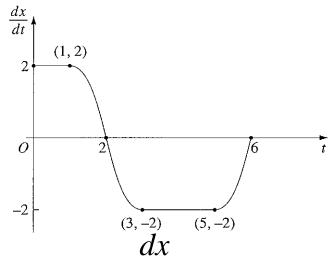
returns to x = 0 when t = 7.2

v is steeper between t = 2 and 4 than between t = 0 and 2

 \therefore particle covers more distance between t = 2 and 4 when t > 6, v is constant

 \therefore when t > 6, x is a straight line

(*v*) **2005 HSC Question 7b**)



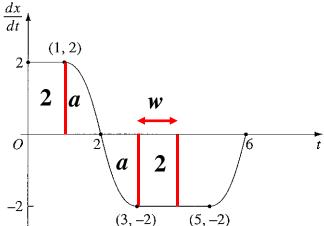
The graph shows the velocity, \overline{dt} , of a particle as a function of time. Initially the particle is at the origin.

(i) At what time is the displacement, x, from the origin a maximum?

Displacement is a maximum when area is most positive, also when velocity is zero

i.e. when t = 2

(ii) At what time does the particle return to the origin? Justify your answer



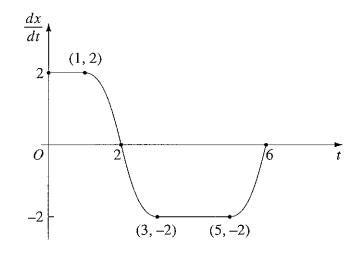
Question is asking, "when is displacement = 0?"

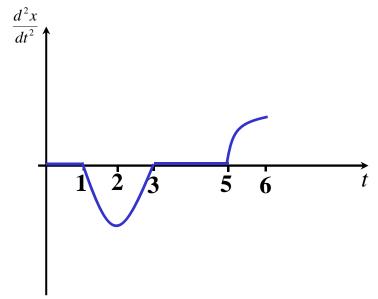
i.e. when is area above the axis = area below?

$$2w = 2$$
$$w = 1$$

Returns to the origin after 4 seconds

(iii) Draw a sketch of the acceleration, time for $0 \le t \le 6$





 $\frac{d^2x}{dt^2}$, as afunction of differentiate a horizontal line you get the *x*axis

from 1 to 3 we have a cubic, inflects at 2, and is decreasing

differentiate, you get a parabola, stationary at 2, it is below the *x* axis

from 5 to 6 is a cubic, inflects at 6 and is increasing (using symmetry)

differentiate, you get a parabola stationary at 6, it is above the *x* axis

Exercise 3C; 1 ace etc, 2 ace etc, 4a, 7ab(i), 8, 9a, 10, 13, 16, 18