## Approximations To Roots

## (1) Halving The Interval



If y = f(x) is a continuous function over the interval  $a \le x \le b$ , and f(a) and f(b) are opposite in sign, then at least one root of the equation f(x) = 0 lies in the interval  $a \le x \le b$ 

e.g Find an approximation to two decimal places for a root of

$$x^4 + 2x - 19 = 0$$
 in the interval  $1 \le x \le 3$ 

$$f(x) = x^{4} + 2x - 19 f(1) = 1^{4} + 2 - 19 f(3) = 3^{4} + 2(3) - 19$$
$$= -16 < 0 = 68 > 0$$

$$x_1 = \frac{1+3}{2} \qquad f(2) = 2^4 + 2(2) - 19$$

$$= 2 \qquad = 1 > 0$$



 $\therefore$  solution lies in interval  $1 \le x \le 2$ 

$$x_2 = \frac{1+2}{2} \quad f(1.5) = 1.5^4 + 2(1.5) - 19$$

$$= -10.9 < 0$$

$$1 \quad 1.5 \quad 2$$

 $\therefore$  solution lies in interval  $1.5 \le x \le 2$ 

$$x_3 = \frac{1.5 + 2}{2} f(1.75) = 1.75^4 + 2(1.75) - 19$$

$$= -6.12 < 0$$

$$= 1.75$$

$$1.75$$

$$= 1.75$$

 $\therefore$  solution lies in interval  $1.75 \le x \le 2$ 

$$x_4 = \frac{1.75 + 2}{2} f(1.88) = 1.88^4 + 2(1.88) - 19$$

$$= -2.75 < 0$$

$$= 1.88$$

$$1.75$$

$$1.88$$

$$2$$

 $\therefore$  solution lies in interval  $1.88 \le x \le 2$ 

$$x_5 = \frac{1.88 + 2}{2} f(1.94) = 1.94^4 + 2(1.94) - 19$$

$$= -0.96 < 0$$

$$= 1.94$$

$$1.88$$

$$1.94$$

$$2$$

 $\therefore$  solution lies in interval  $1.94 \le x \le 2$ 

$$x_6 = \frac{1.94 + 2}{2} f(1.97) = 1.97^4 + 2(1.97) - 19$$

$$= 1.97$$

$$= 0.001 > 0$$

$$1.94$$

$$1.97$$

$$2$$

 $\therefore$  solution lies in interval  $1.94 \le x \le 1.97$ 

$$x_7 = \frac{1.94 + 1.97}{2}$$

$$= 1.96$$

$$f(1.96) = 1.96^4 + 2(1.96) - 19$$

$$= -0.32 < 0$$
1.96
1.97

 $\therefore$  solution lies in interval  $1.96 \le x \le 1.97$ 

so is the solution closer to 1.96 or 1.97?

$$f(1.965) = 1.965^{4} + 2(1.965) - 19$$

$$= -0.16 < 0$$
1.96
1.965
1.97

 $\therefore$  an approximation for the root is x = 1.97

(2) Newton's Method of Approximation



## NOTE:

 $x_0$  must be a good first approximation Newton's method finds where the tangent at  $x_0$  cuts the x axis

If 
$$f'(x_0) = 0$$

i.e. tangent || x axis the method will fail

Using the tangent at  $x_0$  to find  $x_1$ 

slope of tangent = 
$$\frac{f(x_0) - 0}{x_0 - x_1}$$
  
 $f'(x_0) = \frac{f(x_0) - 0}{x_0 - x_1}$ 

$$(x_0 - x_1) f'(x_0) = f(x_0)$$
$$x_0 - x_1 = \frac{f(x_0)}{f'(x_0)}$$

If  $x_0$  is a good first approximation to a root of the equation f(x) = 0, then a closer approximation is given by;

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Successive approximations  $x_2, x_3, ..., x_n, x_{n+1}$  are given by;

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

e.g Find an approximation to two decimal places for a root of

$$x^{4} + 2x - 19 = 0$$

$$f(x) = x^{4} + 2x - 19$$

$$f'(x) = 4x^{3} + 2$$

$$x_{0} = 1.5 \qquad f(1.5) = 1.5^{4} + 2(1.5) - 19 \qquad f'(1.5) = 4(1.5)^{3} + 2$$

$$= -10.9375 \qquad = 15.5$$

$$x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}$$

$$= 1.5 - \frac{-10.9375}{15.5}$$

$$= 2.21$$

$$f(2.21) = 2.21^{4} + 2(2.21) - 19$$

$$= 9.2744$$

$$f'(2.21) = 4(2.21)^{3} + 2$$

$$= 45.1754$$

$$x_2 = 2.21 - \frac{9.2744}{45.1754}$$
$$= 2.00$$

$$x_3 = 2 - \frac{1}{35}$$
  
= 1.97

$$x_4 = 1.97 - \frac{0.001}{32.58}$$
$$= 1.97$$

$$f(2) = 2^{4} + 2(2) - 19$$

$$= 1$$

$$f'(2) = 4(2)^{3} + 2$$

$$= 35$$

$$f(1.97) = 1.97^{4} + 2(1.97) - 19$$

$$= 0.001$$

$$f'(1.97) = 4(1.97)^{3} + 2$$

$$= 32.58$$

$$\therefore x = 1.97$$
 is a better approximation for the root

(ii) Use Newton's Method to obtain an approximation to  $\sqrt{23}$  correct to two decimal places

$$f(x) = x^{2} - 23$$

$$x_{n} = x_{n-1} - \frac{x_{n-1}^{2} - 23}{2x_{n-1}}$$

$$f'(x) = 2x$$

$$= \frac{x_{n-1}^{2} + 23}{2x_{n-1}}$$

$$x_{0} = 5$$

$$x_{1} = \frac{5^{2} + 23}{2(5)}$$

$$x_{2} = \frac{4.8^{2} + 23}{2(4.8)}$$

$$x_{1} = 4.8$$

$$x_{2} = 4.795833333$$

$$x_{2} = 4.80 \text{ (to 2 dp)}$$

$$\therefore \sqrt{23} = 4.80 \text{ (to 2 dp)}$$

## Other Possible Problems with Newton's Method

