

Student Name: _____

Teacher:

2012 TRIAL HSC EXAMINATION

Mathematics Extension 1

Examiners

Mr J. Dillon, Mrs S. Hackett, Mr G. Rawson and Mrs D. Crancher

General Instructions

- Reading time 5 minutes.
- Working time 2 hours.
- Write using black or blue pen. Diagrams may be drawn in pencil.
- Board-approved calculators and mathematics templates may be used.
- A table of standard integrals is provided at the back of this paper.
- Show all necessary working in Questions 11-14.
- Start each question in a separate answer booklet.
- Put your student number on each booklet.

Total marks - 70

Section I

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

60 marks

- Attempt Questions 11-14. Each of these four questions are worth 15 marks
- Allow about 1 hour 45 minutes for this section

Section I

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 10

What is another expression for $\cos(x+y)$? 1.

(A)	$\cos x \cos y - \sin x \sin y$	(B)	$\sin x \cos y + \cos x \sin y$
(C)	$\cos x \cos y + \sin x \sin y$	(D)	$\sin x \cos y - \cos x \sin y$

2. Which of the following is an expression for $\int \cos^2 2x dx$?

(A)
$$x - \frac{1}{4}\sin 4x + c$$
 (B) $x + \frac{1}{4}\sin 4x + c$
(C) $\frac{x}{2} - \frac{1}{8}\sin 4x + c$ (D) $\frac{x}{2} + \frac{1}{8}\sin 4x + c$

- 3. What is the domain of the function $f(x) = 2\sin^{-1}\left(\frac{x}{2}\right)$? $-2\pi \le x \le 2\pi$ (A) $-\pi \le x \le \pi$ **(B)**
 - (D) $-2 \le x \le 2$ $-1 \le x \le 1$ (C)
- Which of the following is the exact value of $\int_{\frac{3}{2}}^{3} \frac{4}{\sqrt{9-x^2}} dx$? 4. $\frac{1}{\sqrt{2}}$

(A)
$$-\pi$$
 (B) $-\frac{\pi}{4}$ (C) $\frac{\pi}{4}$ (D) π

5. Given
$$f(x) = \frac{3}{x} - 4$$
, $f^{-1}(4) = ?$
(A) $-\frac{13}{4}$ (B) $\frac{13}{4}$ (C) $\frac{3}{8}$ (D) $-\frac{3}{8}$

6 Mathematical induction is used to prove

$$1^{2} + 3^{2} + 5^{2} + \dots + (2n-1)^{2} = \frac{1}{3}n(2n+1)(2n-1)$$
 for all positive integers $n \ge 1$.

Which of the following has an incorrect expression for part of the induction proof?

(A) Step 1: To prove the statement true for n=1LHS = $1^2 = 1$ RHS = $\frac{1}{3} \times 1 \times (2 \times 1 + 1)(2 \times 1 - 1) = 1$ Result is true for n=1

(B) Step 2: Assume the result true for
$$n = k$$

 $1^2 + 3^2 + 5^2 + ... + (2k-1)^2 = \frac{1}{3}(k+1)(2k+1)(2k-1)$

(C) To prove the result is true for
$$n = k + 1$$

 $1^2 + 3^2 + 5^2 + ... + (2k - 1)^2 + (2(k + 1) - 1)^2$
 $= \frac{1}{3}(k + 1)(2(k + 1) + 1)(2(k + 1) - 1)$
 $= \frac{1}{3}(k + 1)(2k + 3)(2k + 1)$

(D) LHS =
$$1^2 + 3^2 + 5^2 + ... + (2k - 1)^2 + (2(k + 1) - 1)^2$$

= $\frac{1}{3}k(2k + 1)(2k - 1) + (2k + 1)^2$
= $\frac{1}{3}(2k + 1)(k(2k - 1) + 3(2k + 1))$
= $\frac{1}{3}(2k + 1)(2k^2 - k + 6k + 3)$
= $\frac{1}{3}(2k + 1)(2k^2 + 5k + 3)$
= $\frac{1}{3}(2k + 1)(k + 1)(2k + 3)$
= RHS

7 Line *TA* is a tangent to the circle at *A* and *TB* is a secant meeting the circle at *B* and *C*.

Given that TA=6, CB=9 and TC=x, what is the value of x?

- (A) -12 (B) 2 (C) 3 (D) 4
- 8 At a dinner party, the host, hostess and their six guests sit at a round table. In how many ways can they be arranged if the host and hostess are separated?
 - (A) 720 (B) 1440 (C) 3600 (D) 5040
- 9 A curve has parametric equations $x = \frac{2}{t}$ and $y = 2t^2$. What is the Cartesian equation of this curve?
 - (A) $y = \frac{4}{x}$ (B) $y = \frac{8}{x}$ (C) $y = \frac{4}{x^2}$ (D) $y = \frac{8}{x^2}$
- 10 The displacement, x metres, from the origin of a particle moving in a straight line at any time (t seconds) is shown in the graph.

When was the particle at rest?

- (A) t = 4.5 and t = 11.5 (B) t = 0
- (C) t = 2, t = 8 and t = 14 (D) t = 8

Section II

Question 11 (15 marks)

60 marks Attempt Questions 11 – 14 Allow about 1 hour and 45 minutes for this section

Answer each question in a new answer booklet.

All necessary working should be shown in every question.

Solve $\frac{3}{r+2} < 1$ 2 (a) At any point on the curve y = f(x), the gradient function is given by (b) $\frac{dy}{dx} = \sin^2 x$. Show that the value of $f\left(\frac{3\pi}{4}\right) - f\left(\frac{\pi}{4}\right)$ is equal to $\frac{\pi}{4} + \frac{1}{2}$. 3 Find the general solutions of $2\sin^3 x - \sin x - 2\sin^2 x + 1 = 0$ 3 (c) Show that $\frac{1+\cos x}{\sin x} = \frac{1}{t}$ for $t = \tan \frac{x}{2}$. (d) 2 Show that $\sin A \cos B = \frac{1}{2} [\sin (A + B) + \sin (A - B)]$ (e) 2 (f) A vertical tower of height *h* metres stands on horizontal ground. From a point P on the ground due east of the tower the angle of elevation of the top of the tower is 45 degrees. From a point Q on the ground due south of the tower the angle of elevation of the top of the tower is 30 degrees. (i) Draw a neat diagram in your answer booklet to represent this situation. 1 If the distance PQ is 40 metres, find the exact height of the tower. 2 (ii)

Start a new answer booklet

Marks

Question 12 (15 marks) Start a new answer booklet

(a) What is the inverse function of
$$y = \frac{1}{4-x}$$
?

(b) Show that
$$\frac{d}{dx} \left(x \cos^{-1} x - \sqrt{1 - x^2} \right) = \cos^{-1} x$$
 2

(c)

2

Marks

Question 12 continued next page.

Question 12 continued this page.

(d) Let $f(x) = 1 + 2\cos\frac{x}{2}$. The diagram shows the graph y = f(x).

(i)	State the period and the amplitude of the curve given that <i>x</i> is expressed in radians.	2
(ii)	The point $P(x,y)$ is a turning point on the curve. Find its coordinates.	1
(iii)	What is the largest possible positive domain, containing $x = 0$, for which $y = f(x)$ has an inverse function?	1
(iv)	Find the equation of $f^{-1}(x)$ for this restricted domain of $f(x)$.	2
(v)	Sketch the curve $y = f^{-1}(x)$.	2
(vi)	$A(\alpha, 0)$ lies to the right of P as indicated in the diagram above. Find a simplified expression for the exact value of $y = f^{-1}(f(\alpha))$.	2

Marks

(a) (i)

O is the centre of the circle *ABP*. *MO* \perp *AB*. *M*, *P* and *B* are collinear. *MO* intersects *AP* at *L*.

		(α)	Prove that <i>A</i> , <i>O</i> , <i>P</i> and <i>M</i> are concyclic.	2
		(β)	Prove that $\angle OPA = \angle OMB$.	2
	(ii)	Use M is divis	athematical Induction to prove that $4 \times 2^n + 3^{3n}$ sible by 5 for all integers <i>n</i> , $n \ge 0$.	3
(b)	(i)	The m M = 2 the go	ass <i>M</i> of a male silverback gorilla is modelled by $200 - 198e^{-kt}$, where <i>M</i> is measured in kilograms, <i>t</i> is the age of tilla in years and <i>k</i> is a positive constant.	
		(α)	Show that the rate of growth of the mass of the gorilla is given by the differential equation $\frac{dM}{dt} = k(200 - M)$	1
		(β)	When the gorilla is 6 years old its mass is 68 kilograms. Find the value of k , correct to three decimal places.	2
		(γ)	According to this model, what is the limiting mass of the gorilla?	1
	(ii)	(α)	Show that $\frac{u^3}{u+1} = u^2 - u + 1 - \frac{1}{u+1}$	1
		(β)	Hence, by using the substitution $u = \sqrt{x}$, show that $\int_{0}^{4} \frac{x}{1 + \sqrt{x}} dx = \frac{16}{3} - \ln 9$	3

Ques	tion 14	(15 marks)	Start a new answer booklet	Marks
(a)	How 1 of the	nany distinct word PARAI	eight letter arrangements can be made using the letters LEL?	2
(b)	Alex's	s playlist consi	sts of 40 different songs that can be arranged in any order.	
	(i)	How many a	arrangements are there for the 40 songs?	1
	(ii)	Alex decide songs first, i	s that she wants to play her three favourite in any order.	
		How many a	arrangements of the 40 songs are now possible?	1
(c)	Two p	oarticles movi	ng in a straight line are initially at the origin. The velocity	
	of one is giv	e particle is $\frac{2}{\pi}$ en by $v = -2c$	m/s and the velocity of the other particle at time t seconds $\cos t$ m/s.	
	(i)	Determine e the particles	equations that give the displacements, x_1 and x_2 metres, of from the origin at time <i>t</i> seconds.	2
	(ii)	Hence, or ot	herwise, show that the particles will never meet again.	2
(d)	P(2p,	(p^2) and $Q(2)$	(q, q^2) are two points on the parabola $x^2 = 4y$.	
	(i)	Show that t	he equation of the tangent to $x^2 = 4y$ at <i>P</i> is $y = px - p^2$.	2
	(ii)	Show that the from <i>P</i> and g	he coordinates of <i>T</i> , the point of intersection of the tangents <i>Q</i> is given by $(p+q, pq)$.	1
	(iii)	Given that -	$\frac{1}{p} + \frac{1}{q} = 2$, find the equation of the locus of <i>T</i> .	1
(e)	A rest	ing adult's bro	eathing cycle is 5 seconds long.	
	For time <i>t</i> seconds, $0 \le t \le 2\frac{1}{2}$, air is taken into the lungs.			
	For $2\frac{1}{2} < t < 5$ air is expelled from the lungs.			
	The rate, R litres/second, at which air is taken in or expelled from the lungs			
	can be	e modelled on	the equation $R = \frac{1}{2} \sin\left(\frac{2\pi}{5}t\right)$.	
	How 1 breath	nany litres of ing cycle?	air does a resting adult take into their lungs during one	3

Left blank intentionally

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0 \text{ if } n < 0$$

$$\int \frac{1}{x} \, dx \qquad = \ln x, \ x > 0$$

- $\int e^{ax} dx \qquad \qquad = \frac{1}{a} e^{ax}, \ a \neq 0$
- $\int \cos ax \, dx \qquad = \frac{1}{a} \sin ax, \ a \neq 0$
- $\int \sin ax \, dx \qquad \qquad = -\frac{1}{a} \cos ax, \ a \neq 0$
- $\int \sec^2 ax \, dx \qquad = \frac{1}{a} \tan ax, \ a \neq 0$
- $\int \sec ax \tan ax \, dx \qquad = \frac{1}{a} \sec ax, \ a \neq 0$
- $\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$
- $\int \frac{1}{\sqrt{a^2 x^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$
- $\int \frac{1}{\sqrt{x^2 a^2}} dx = \ln(x + \sqrt{x^2 a^2}), x > a > 0$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx \qquad = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_e x, x > 0$

Left blank intentionally

Year 12 Mathematics Extension 1

Section I - Answer Sheet

Student Number _____

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample: 2 + 4 = (A) 2 (B) 6 (C) 8 (D) 9 A \bigcirc B \bigcirc C \bigcirc D \bigcirc

• If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

• If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.

Year 1	2 Extension 1 Mathematics	Task 4-Trial HSC 2012			
Quest Guide	Questions 1 to 10 Multiple Choice Solutions and Marking Guidelines				
Guiut	Outcome Addressed in this Ouestion				
PE5	determines derivatives which require the application of more than	one rule of differentiation			
HE4	uses the relationship between functions, inverse functions and their	derivatives			
HE2	uses inductive reasoning in the construction of proofs				
PE2	uses multi-step deductive reasoning in a variety of contexts				
PE3	solves problems involving permutations and combinations inequal	ities polynomials circle			
geome	try and parametric representations	dentify geometric properties of			
narabo	las	dentity geometric properties of			
HF3	uses a variety of strategies to investigate mathematical models of s	ituations involving hinomial			
nrobał	ility projectiles simple harmonic motion or exponential growth an	d decay			
HE7	evaluates mathematical solutions to problems and communicates the	nem in an appropriate form			
TIL/	Solutions	Marking Cuidalines			
Outcome	Ougstion 1	Marking Guidennes			
	Question 1.				
UF7	$\cos(u + u) = \cos u \cos u$, sin usin u				
пс/	$\cos(x+y) = \cos x \cos y - \sin x \sin y$				
	Answer is A	1 mark for correct answer			
	Question 2.				
PE5	$\int \cos^2 2x dx = \int \left(\frac{1}{2} + \frac{1}{2}\cos 4x\right) dx$				
	$=\frac{1}{2}x+\frac{1}{8}\sin 4x+C$				
	$=\frac{x}{x}+\frac{1}{\sin 4x}+C$				
	2 8	1 mark for correct answer			
	Answer is D	I mark for correct answer			
	Question 3.				
HE4	Now,				
	$-1 \le \frac{x}{2} \le 1$				
	2				
	Therefore domain is $-2 \le x \le 2$.				
	Answer is D	1 mark for correct answer			

	Ouestion 4.	
HE4	Question 4. $\int_{\frac{3}{\sqrt{2}}}^{3} \frac{4}{\sqrt{9-x^2}} dx$ $= \left[4\sin^{-1}\left(\frac{x}{3}\right) \right]_{\frac{3}{\sqrt{2}}}^{3}$ $= 4\sin^{-1}1 - 4\sin^{-1}\frac{1}{\sqrt{2}}$ $= 4\left(\frac{\pi}{2}\right) - 4\left(\frac{\pi}{4}\right)$ $= 2\pi - \pi$ $= \pi$	
	Answer is D	1 mark for correct answer
	Question 5.	
	Function is:	
	$f(x) = \frac{3}{4} - 4$	
	$\int (x)^{-} x$	
HE4	<i>i.e.</i> $y = \frac{3}{x} - 4$	
	Inverse function is:	
	$x = \frac{3}{y} - 4$ $x + 4 = \frac{3}{y}$ $y = \frac{3}{x + 4}$ $i.e. f^{-1}(x) = \frac{3}{-1}$	
	i.e. $\int (x) - \frac{1}{x+4}$	
	Therefore, $f^{-1}(4) = 3 = 3$	
	$J (4) = \frac{1}{4+4} = \frac{1}{8}$	
	Answer is C	1 mark for correct answer
	Question 6.	
	The incorrect expression for part of the induction proof is:	
HE2	(B) Step 2: Assume the result true for $n = k$	
	$1^{2} + 3^{2} + 5^{2} + + (2k-1)^{2} = \frac{1}{-}(k+1)(2k+1)(2k-1)$	
	Answer is B	1 mark for correct answer

	Question 7.	
PE2 PE3	$6^2 = x(x+9)$ [The square of the intercept on tangent to a circle equals the product of the intercepts on the secant]	
	$36 = x^2 + 9x$	
	$x^2 + 9x - 36 = 0$	
	(x+12)(x-3)=0	
	x = -12, 3	
	The value of x is 3.	
	Answer is C	1 mark for correct answer
	Question 8.	
PE3	5×6!=3600	1 mark for correct answer
	Answer is C	I mark for correct answer
	Question 9.	
PE4	Now,	
	$x = \frac{2}{t} \dots A$	
	Rearrange A	
	$t = \frac{2}{2}$	
	X	
	$y = 2t^2 \dots B$	
	substitute $t = \frac{2}{x}$ into B	
	$\therefore y = 2\left(\frac{2}{x}\right)^2$	
	$\therefore y = \frac{8}{x^2}$	
	Answer is D	1 mark for correct answer
	Question 10.	
	The particle is at rest when $\frac{dy}{dx} = 0$ which occurs at the maximum	
HE3	and minimum turning points. <i>i.e.</i> $t = 4.5$ and $t = 11.5$	
	Answer is A	1 mark for correct answer

Year	12 Extension 1 Mathematics	Task 4-Trial HSC 2012	
Quest	ions 11 Solutions and Marking Guidelines		
	Outcome Addressed in this Question		
PE3	solves problems involving permutations and combinations, inequali	ties, polynomials, circle	
	geometry and parametric representations		
HE7	evaluates mathematical solutions to problems and communicates them in an appropriate form		
PE6	makes comprehensive use of mathematical language, diagrams and	notation for communicating in a	
114	wide variety of situations		
H4	expresses practical problems in mathematical terms based on simple	Marking Cuidaling	
Outcome	Solutions	Marking Guidennes	
	Question 11.		
	(a)	2 Marks for complete correct	
PE3	$3 < 1 \qquad r \neq -2$	solution.	
	$\frac{1}{x+2} < 1$ $x \neq -2$		
		1 Mark for finding one	
	$(x+2)^{2} \times \frac{1}{(x+2)^{2}} < 1 \times (x+2)^{2}$	a wrat solution or	
	(x + 2)	multiplying both sides of the	
	$3(x+2) < 1(x+2)^2$	incomplity by $(x + 2)^2$	
	(x+2)(3-x-2) < 0	mequality by $(x+2)$.	
	(x+2)(1-x) < 0		
	y y		
	$4 \stackrel{\wedge}{+}$		
	\leftarrow		
	-4-		
	-6-		
	r < -2 or r > 1		
	$x \leq -2$ or $x \geq 1$		
	(b)		
	dv a	3 Marks for complete correct	
HE7	$\frac{dy}{dx} = \sin^2 x$	solution	
	a_{λ}		
	$\frac{dy}{dt} = \frac{1}{2} - \frac{1}{2}\cos 2x$	2 Marks for finding correct	
	dx = 2	equation for y and correctly	
	$y = \frac{1}{x} - \frac{1}{x} \times \frac{\sin 2x}{\sin 2x} + C$	substituting into y for both	
		values	
	$x = \frac{x - 1}{\sin 2x}$		
	y =	1 Mark for finding correct	
	(3π) (π) $(3\pi$ 1 3π $)$ $(\pi$ 1 π $)$	equation for y	
	$f\left[\frac{3\pi}{4}\right] - f\left[\frac{\pi}{4}\right] = \left[\frac{3\pi}{8} - \frac{1}{4}\sin\frac{3\pi}{2} + C\right] - \left[\frac{\pi}{8} - \frac{1}{4}\sin\frac{\pi}{2} + C\right]$		
	$=\left(\frac{3\pi}{2}+\frac{1}{2}\right)-\left(\frac{\pi}{2}-\frac{1}{2}\right)$		
	$\begin{pmatrix} 8 & 4 \end{pmatrix} \begin{pmatrix} 8 & 4 \end{pmatrix}$		
	π 1		
	= -+		
	. 2		

	Year 12 Trial HSC 2012 – Extension 1 Mathematics			
Questi	on No:	12 Solutions and Marking Guidelines		
Outcon	nes Add	ressed in this Question: elationship between functions, inverse functions and their derivatives		
Outcome		Sample Solution	Marking Guidelines	
	a)		<u>1 mark</u> – correct answer	
HE4		Inverse: $x = \frac{1}{4 - y}$ $4 - y = \frac{1}{x}$ $y = 4 - \frac{1}{2}$		
HE4	b) c)	$\frac{d}{dx}\left(x\cos^{-1}x - \sqrt{1-x^2}\right) = \cos^{-1}x \cdot 1 + x \cdot \frac{1}{\sqrt{1-x^2}} - \frac{1}{2}(1-x^2)^{-\frac{1}{2}} \cdot 2x$ $= \cos^{-1}x + \frac{x}{\sqrt{1-x^2}} - \frac{x}{\sqrt{1-x^2}}$ $= \cos^{-1}x$	<u>2 marks</u> – correct solution clearly showing all steps <u>1 mark</u> – substantial progress towards correct solution	
HE4	- /	Shaded area = Area of rectangle - area between curve and y axis bounded by y=0 and y= $\frac{\pi}{2}$	2 marks – correct	
		Shaded area $= 2 \times \frac{\pi}{2} - \int_{0}^{\frac{\pi}{2}} x dy$ Given $y = \sin^{-1} \frac{x}{2}$, $x = 2 \sin y$ Shaded area $= \pi - \int_{0}^{\frac{\pi}{2}} 2 \sin y dy$	explanation, clearly showing all steps <u>1 mark</u> – substantial progress towards correct explanation	
	<i>с.</i> ст.	Shaded area $= \pi - 2 \int_{0}^{\frac{\pi}{2}} \sin y dy$		
HE4	a) 1)	$period = \frac{2\pi}{\frac{1}{2}} = 4\pi$	$\frac{2 \text{ marks}}{1 \text{ mark}} - \text{ two correct}$ $\frac{1 \text{ mark}}{1 \text{ mark}} - \text{ one correct}$	
		amplitude = 2		
HE4	d) ii)	$P(2\pi, -1)$	<u>1 mark</u> – correct answer	
HE4	d) iii)	$0 \le x \le 2\pi$	<u>1 mark</u> – correct answer	
HE4	d) iv)	$y = 1 + 2\cos\frac{x}{2}$ Inverse: $x = 1 + 2\cos\frac{y}{2}$ $\frac{x-1}{2} = \cos\frac{y}{2}$ $y = 2\cos^{-1}\left(\frac{x-1}{2}\right)$ $f^{-1}(x) = 2\cos^{-1}\left(\frac{x-1}{2}\right)$	<u>2 marks</u> – correct solution <u>1 mark</u> – substantial progress towards correct solution	

Year	12 Extension 1 Mathematics	Trial HSC 2012
Quest	ion 13 Solutions and Marking Guidelines	
PE3	solves problems involving circle geometry	
HE2 HE3	uses inductive reasoning in the construction of proofs	ial growth and decay
HE6	determines integrals by reduction to a standard form through a given substitution	an growth and decay
Outcome	Solutions	Marking Guidelines
PE3	(a)(1)(α)	
	$\angle APB = 90^{\circ}$ (angle at the circumference in a semi-circle equals 90°)	Award 2
	$\therefore \angle APM + 90^{\circ} = 180^{\circ} \text{ (angle sum of straight angle MPB equals } 180^{\circ} \text{)}$	Correct solution.
	$\therefore \angle APM = 90^{\circ}$	Award 1
	$\angle AOM = 90^{\circ} (given)$	Correct solution with
	$\therefore \angle APM = \angle AOM = 90^{\circ}$	provided
	\therefore AOPM is cyclic (AM subtends equal angles on the same side at O and P)	provided
	\therefore A,O,P and M are concyclic.	
PE3	$(a)(i)(\beta)$	Award 2
1125	AO = OP (radii)	Correct solution.
	$\therefore \angle PAO = \angle OPA \text{ (equal angles are opposite equal sides in } \triangle OPA \text{)}$	Award 1
	But, $\angle OAP = \angle OMP$ (angles at the circumference in the same segment are equal)	Correct solution with
	$\therefore \angle OPA = \angle OMB \left(= \angle OMP\right)$	insufficient reasoning
		provided
	(a) (ii)	
HE2	Show true for $n = 0$,	
	$4 \times 2^{0} + 3^{3.0} = 4 + 1 = 5$ which is divisible by 5.	Award 3 Correct solution
	\therefore True for $n = 0$	
	Show true for $n = 1$,	Award 2 Attempts to prove true for
	$4 \times 2^{1} + 3^{3.1} = 8 + 27 = 35$ which is divisible by 5.	n = k + 1, after proving true
	\therefore True for $n = 1$	for $n = 0$ and using
		assumption.
	Assume true for $n = k$, i.e. $4 \times 2^k + 3^{3k} = 5M$, <i>M</i> is an integer.	Award 1
		Proves true for $n = 0$.
	Prove true for $n = k + 1$, i.e. Show $4 \times 2^{k+1} + 3^{3(k+1)} = 5J$, J is an integer.	
	$4 \times 2^{k+1} + 3^{3(k+1)} = 4 \times 2 \times 2^{k} + 3^{3(k+1)}$	
	$= 2 \times \left(5M - 3^{3k}\right) + 3^{3k} \times 3^3$	
	$= 2 \times 5M - 2 \times 3^{3k} + 27 \times 3^{3k}$	
	$= 2 \times 5M + 25 \times 3^{3k}$	
	$=5\left(2M+5\times 3^{3k}\right)$	
	=5J, J is an integer	
	\therefore True for $n = k + 1$.	
	\therefore True by mathematical induction for $n \ge 0$	
1		

HE3	(b)(i)(α)		
	$M = 200 - 198e^{-kt} $	$-\left(200-198e^{-kt}\right)$	ward 1 for correct
	LHS = $\frac{dM}{dt}$ = -198 ke^{-kt} = $k.198e^{-kt}$	kt SO	olution.
	$= k.198e^{-kt} = LHS$		
	$\therefore M = 200 - 198e^{-kt} \text{ is a solution to } \frac{dM}{dt} = k(200 - M)$		
HE3	(b)(i)(β)		
	t = 6, M = 68		
	$68 = 200 - 198e^{-6k}$	A	ward 2 for correct
	$198e^{-bk} = 132$	so	
	$e^{-6k} = \frac{132}{198} = \frac{2}{3}$	Av	ward I for substantial
	$\begin{bmatrix} 1 & 1 \\ 2 \end{bmatrix}$	pr	ogress towards solution.
	$-6\kappa = \ln\left(\frac{1}{3}\right)$		
	$k = \frac{1}{6} \ln\left(\frac{3}{2}\right) \approx 0.06757751802$		
	$\therefore k = 0.068$ (to 3 decimal places)		
HE3	(b)(i)(γ)		word 1 for correct
	As $t \to \infty$, $M \to 200$: Limiting mass = 200 kg	SO	blution.
	$(\mathbf{b})(\mathbf{i}\mathbf{i})(\alpha)$		
	u^3		ward 1 for correct
	$LHS = \frac{1}{u+1}$	so	blution.
	$RHS = u^2 - u + 1 - \frac{1}{u + 1}$		
	$u^{2}(u+1) - u(u+1) + 1(u+1) - 1$		
	$=$ $\frac{1}{u+1}$		
	$=\frac{u^3+u^2-u^2-u+u+1-1}{1}$		
	u+1 u^3		
	$=\frac{1}{u+1}$		
	= LHS		
HE6	(b)(ii)(β)		
	$\int \frac{x}{1+\sqrt{x}} dx u = \sqrt{x} \Longrightarrow dx = 2\sqrt{x} du = 2u du$	A	ward 3
	$\int_{0}^{0} u^{2} + 2u du$	Co	orrect solution.
	$=\int_{0}^{0}\frac{1+u}{1+u}\cdot 2udu$	A	ward 2
	$=2\int_{0}^{\infty}\frac{u^{3}}{u+1}du$	Su	ubstantial progress towards lution
	$= 2 \int_{-\infty}^{2} \left(u^2 - u + 1 - \frac{1}{u+1} \right) du$	A	ward 1
	$= 2\left[\frac{u^3}{3} - \frac{u^2}{2} + u - \ln(u+1)\right]^2$	Li	imited progress towards olution
	$= 2\left[\frac{8}{3} - \frac{4}{2} + 2 - \ln(3) - (0 - 0 + 0 - \ln(1))\right]$		
	$=2\left[\frac{8}{3}-\ln\left(3\right)\right]$		
	$=\frac{16}{3}-2\ln(3)$		
	$=\frac{16}{3}-\ln(9)$		

Year 12	Mathematics Extension 1	TRIAL EXAM 2012			
Question N	Question No. 14 Solutions and Marking Guidelines				
	Outcomes Addressed in this Question				
PE3 - solves p H4 - expresses H5 - applies ap H9 - communi HE7 - evaluate	 PE3 - solves problems involving permutations and combinations, inequalities, polynomials, circle geometry and parametric representations H4 - expresses practical problems in mathematical terms based on simple given models H5 - applies appropriate techniques from the study of calculus, geometry, probability, trigonometry and series to solve problems H9 - communicates using mathematical language, notation, diagrams and graphs HE7 - evaluates mathematical solutions to problems and communicates them in an appropriate form 				
Outcome	Solutions	Marking Guidelines			
PE3	(a) Arrangements $=\frac{8!}{3!2!} = \frac{40320}{12} = 3360$ ways	<u>2 marks</u> : correct answer <u>1 mark</u> : partially correct solution (1 for 8! or 1 for division)			
PE3	(b) (i) 40! (= $8 \cdot 159 \times 10^{47}$) (ii) 3! × 37! (= $8 \cdot 258 \times 10^{43}$)	<u>1 mark</u> : correct solution <u>1 mark : correct solution</u>			
H4, H5	(c) (i) $v_1 = \frac{2}{\pi}$ $v_2 = -2\cos t$ $x_2 = -2\sin t + C_2$ $x_1 = \frac{2t}{\pi} + C_1$ when $t = 0, x = 0$ when $t = 0, x = 0$ $\Rightarrow C_2 = 0$ $\Rightarrow C_1 = 0$ $\therefore x_2 = -2\sin t$ $\therefore x_1 = \frac{2t}{\pi}$ (ii) $x_1 = \frac{2t}{\pi}$	<u>2 marks</u> : correct solution <u>1 mark</u> : substantially correct solution <u>2 marks</u> : correct solution			
H4, H5, H9	π 2π t	<u>1 mark</u> : substantially correct solution			
PE3	E3 The graphs don't interesect again. $x = \frac{2t}{\pi}$ has a value greater than 2 for $x > \pi$, and the maximum value of $x = -2 \sin t$ is 2. (d) (i) To find the gradient of the tangent $y = \frac{1}{4}x^2$ $\frac{dy}{dx} = \frac{1}{2}x$ At $P(2p, p^2)$ $\frac{dy}{dx} = \frac{1}{2} \times 2p = p$ Equation of the tangent at $P(2p, p^2)$ $y - y_1 = m(x - x_1)$ $y - p^2 = p(x - 2p)$ $px - y - p^2 = 0$ (1) $\frac{dy}{dx} = \frac{1}{2}x^2$				

PE3	(ii) Similarly at $Q(2q,q^2)$ the equation of the tangent is $qx-y-q^2 = 0$ (2)	
1 20	Eqn (1) - (2) $px - qx - p^2 + q^2 = 0$ $(p - q)x = p^2 - q^2$ = (p - q)(p + q) x = (p + q)	<u>1 mark</u> : correct solution
	Substitute $(p+q)$ for x into Eqn(1) $p(p+q) - y - p^2 = 0$ $y = p^2 + pq - p^2$ = pq	
	The coordinates of <i>T</i> is $(p+q, pq)$	
PE3	(iii) To find the equation of the locus eliminate <i>p</i> and <i>q</i> . Now $x = p + q$ and $y = pq$ (Coordinates of <i>T</i>) Given $\frac{1}{p} + \frac{1}{q} = 2$ or $\frac{p+q}{pq} = 2$	<u>1 mark</u> : correct solution
	Therefore $\frac{x}{y} = 2$ $y = \frac{x}{2}$	
HE7	(e) $\frac{dV}{dt} = \frac{1}{2} \sin\left(\frac{2\pi}{5}t\right)$ $V = \int_{0}^{\frac{5}{2}} \frac{1}{2} \sin\left(\frac{2\pi}{5}t\right) dt$	<u>3 marks</u> : correct solution <u>2 marks</u> : substantially correct solution
	$= -\frac{1}{2} \cdot \frac{5}{2\pi} \left[\cos\left(\frac{2\pi}{5}t\right) \right]_{0}^{\frac{5}{2}}$	<u>1 mark</u> : partially correct solution
	$= -\frac{5}{4\pi} [\cos \pi - \cos 0]$ $= -\frac{5}{4\pi} \cdot [-2]$ $= \frac{5}{2\pi} \text{ litres.}$	