Student Name: \qquad

Teacher:

2012
 TRIAL HSC EXAMINATION

Mathematics Extension 1

Examiners
Mr J. Dillon, Mrs S. Hackett, Mr G. Rawson and Mrs D. Crancher

General Instructions

- Reading time - 5 minutes.
- Working time - 2 hours.
- Write using black or blue pen. Diagrams may be drawn in pencil.
- Board-approved calculators and mathematics templates may be used.
- A table of standard integrals is provided at the back of this paper.
- Show all necessary working in Questions 11-14.
- Start each question in a separate answer booklet.
- Put your student number on each booklet.

Total marks - 70

Section I

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

60 marks

- Attempt Questions 11-14. Each of these four questions are worth 15 marks
- Allow about 1 hour 45 minutes for this section

Section I

10 marks

Attempt Questions 1 - 10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1 - 10

1. What is another expression for $\cos (x+y)$?
(A) $\cos x \cos y-\sin x \sin y$
(B) $\sin x \cos y+\cos x \sin y$
(C) $\quad \cos x \cos y+\sin x \sin y$
(D) $\quad \sin x \cos y-\cos x \sin y$
2. Which of the following is an expression for $\int \cos ^{2} 2 x d x$?
(A) $x-\frac{1}{4} \sin 4 x+c$
(B) $x+\frac{1}{4} \sin 4 x+c$
(C) $\frac{x}{2}-\frac{1}{8} \sin 4 x+c$
(D) $\frac{x}{2}+\frac{1}{8} \sin 4 x+c$
3. What is the domain of the function $f(x)=2 \sin ^{-1}\left(\frac{x}{2}\right)$?
(A) $-\pi \leq x \leq \pi$
(B) $-2 \pi \leq x \leq 2 \pi$
(C) $\quad-1 \leq x \leq 1$
(D) $-2 \leq x \leq 2$
4. Which of the following is the exact value of $\int_{\frac{3}{\sqrt{2}}}^{3} \frac{4}{\sqrt{9-x^{2}}} d x$?
(A) $-\pi$
(B) $-\frac{\pi}{4}$
(C) $\frac{\pi}{4}$
(D) π
5. Given $f(x)=\frac{3}{x}-4, f^{-1}(4)=$?
(A) $-\frac{13}{4}$
(B) $\frac{13}{4}$
(C) $\frac{3}{8}$
(D) $-\frac{3}{8}$

6 Mathematical induction is used to prove

$$
1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{1}{3} n(2 n+1)(2 n-1) \text { for all positive integers } n \geq 1
$$

Which of the following has an incorrect expression for part of the induction proof?
(A) Step 1: To prove the statement true for $n=1$

$$
\text { LHS }=1^{2}=1 \quad \text { RHS }=\frac{1}{3} \times 1 \times(2 \times 1+1)(2 \times 1-1)=1
$$

Result is true for $n=1$
(B) Step 2: Assume the result true for $n=k$

$$
1^{2}+3^{2}+5^{2}+\ldots+(2 k-1)^{2}=\frac{1}{3}(k+1)(2 k+1)(2 k-1)
$$

(C) To prove the result is true for $n=k+1$

$$
\begin{aligned}
1^{2}+3^{2}+5^{2}+\ldots & +(2 k-1)^{2}+(2(k+1)-1)^{2} \\
& =\frac{1}{3}(k+1)(2(k+1)+1)(2(k+1)-1) \\
& =\frac{1}{3}(k+1)(2 k+3)(2 k+1)
\end{aligned}
$$

(D) $\mathrm{LHS}=1^{2}+3^{2}+5^{2}+\ldots+(2 k-1)^{2}+(2(k+1)-1)^{2}$

$$
\begin{aligned}
& =\frac{1}{3} k(2 k+1)(2 k-1)+(2 k+1)^{2} \\
& =\frac{1}{3}(2 k+1)(k(2 k-1)+3(2 k+1)) \\
& =\frac{1}{3}(2 k+1)\left(2 k^{2}-k+6 k+3\right) \\
& =\frac{1}{3}(2 k+1)\left(2 k^{2}+5 k+3\right) \\
& =\frac{1}{3}(2 k+1)(k+1)(2 k+3) \\
& =\text { RHS }
\end{aligned}
$$

7 Line $T A$ is a tangent to the circle at A and $T B$ is a secant meeting the circle at B and C.

Given that $T A=6, C B=9$ and $T C=x$, what is the value of x ?
(A) -12
(B) 2
(C) 3
(D) 4

8 At a dinner party, the host, hostess and their six guests sit at a round table. In how many ways can they be arranged if the host and hostess are separated?
(A) 720
(B) 1440
(C) 3600
(D) 5040

9 A curve has parametric equations $x=\frac{2}{t}$ and $y=2 t^{2}$.
What is the Cartesian equation of this curve?
(A) $y=\frac{4}{x}$
(B) $y=\frac{8}{x}$
(C) $y=\frac{4}{x^{2}}$
(D) $y=\frac{8}{x^{2}}$

10 The displacement, x metres, from the origin of a particle moving in a straight line at any time (t seconds) is shown in the graph.

When was the particle at rest?
(A) $t=4.5$ and $t=11.5$
(B) $t=0$
(C) $\quad t=2, t=8$ and $t=14$
(D) $\quad t=8$

Section II

60 marks
Attempt Questions 11 - 14
Allow about $\mathbf{1}$ hour and $\mathbf{4 5}$ minutes for this section
Answer each question in a new answer booklet.
All necessary working should be shown in every question.

Question 11 (15 marks) Start a new answer booklet
(a) Solve $\frac{3}{x+2}<1$

2
(b) At any point on the curve $y=f(x)$, the gradient function is given by
$\frac{d y}{d x}=\sin ^{2} x$. Show that the value of $f\left(\frac{3 \pi}{4}\right)-f\left(\frac{\pi}{4}\right)$ is equal to $\frac{\pi}{4}+\frac{1}{2}$.
(c) Find the general solutions of $2 \sin ^{3} x-\sin x-2 \sin ^{2} x+1=0$
(d) Show that $\frac{1+\cos x}{\sin x}=\frac{1}{t}$ for $t=\tan \frac{x}{2}$.
(e) Show that $\sin A \cos B=\frac{1}{2}[\sin (A+B)+\sin (A-B)]$
(f) A vertical tower of height h metres stands on horizontal ground.

From a point P on the ground due east of the tower the angle of elevation of the top of the tower is 45 degrees.

From a point Q on the ground due south of the tower the angle of elevation of the top of the tower is 30 degrees.
(i) Draw a neat diagram in your answer booklet to represent this situation.
(ii) If the distance $P Q$ is 40 metres, find the exact height of the tower.
(a) What is the inverse function of $y=\frac{1}{4-x}$?
(b) Show that $\frac{d}{d x}\left(x \cos ^{-1} x-\sqrt{1-x^{2}}\right)=\cos ^{-1} x$ 2
(c)

The shaded area is represented by $\int_{0}^{2} \sin ^{-1} \frac{x}{2} d x$.
Explain why the area is given by $\pi-2 \int_{0}^{\frac{\pi}{2}} \sin y d y$.
(d) Let $f(x)=1+2 \cos \frac{x}{2}$. The diagram shows the graph $y=f(x)$.

(i) State the period and the amplitude of the curve given that x is expressed in radians.
(ii) The point $P(x, y)$ is a turning point on the curve. Find its coordinates.
(iii) What is the largest possible positive domain, containing $x=0$, for which $y=f(x)$ has an inverse function?
(iv) Find the equation of $f^{-1}(x)$ for this restricted domain of $f(x)$.
(v) Sketch the curve $y=f^{-1}(x)$.
(vi) $\quad A(\alpha, 0)$ lies to the right of P as indicated in the diagram above. Find a simplified expression for the exact value of $y=f^{-1}(f(\alpha))$.

Question 13 (15 marks) Start a new answer booklet
(a) (i)

NOT TO SCALE

O is the centre of the circle $A B P . M O \perp A B . M, P$ and B are collinear. $M O$ intersects $A P$ at L.
(α) Prove that A, O, P and M are concyclic.
(β) Prove that $\angle O P A=\angle O M B$.
(ii) Use Mathematical Induction to prove that

$$
4 \times 2^{n}+3^{3 n}
$$

is divisible by 5 for all integers $n, n \geq 0$.
(b) (i) The mass M of a male silverback gorilla is modelled by $M=200-198 e^{-k t}$, where M is measured in kilograms, t is the age of the gorilla in years and k is a positive constant.
(α) Show that the rate of growth of the mass of the gorilla is given by the differential equation $\frac{d M}{d t}=k(200-M)$

1
$(\beta) \quad$ When the gorilla is 6 years old its mass is 68 kilograms. Find the value of k, correct to three decimal places.
$(\gamma) \quad$ According to this model, what is the limiting mass of the gorilla?
(ii) ($\alpha) \quad$ Show that $\frac{u^{3}}{u+1}=u^{2}-u+1-\frac{1}{u+1}$
(β) Hence, by using the substitution $u=\sqrt{x}$, show that

$$
\int_{0}^{4} \frac{x}{1+\sqrt{x}} d x=\frac{16}{3}-\ln 9
$$

Question 14 (15 marks) Start a new answer booklet
(a) How many distinct eight letter arrangements can be made using the letters of the word PARALLEL?
(b) Alex's playlist consists of 40 different songs that can be arranged in any order.
(i) How many arrangements are there for the 40 songs?
(ii) Alex decides that she wants to play her three favourite songs first, in any order.

How many arrangements of the 40 songs are now possible?
(c) Two particles moving in a straight line are initially at the origin. The velocity of one particle is $\frac{2}{\pi} \mathrm{~m} / \mathrm{s}$ and the velocity of the other particle at time t seconds is given by $v=-2 \cos t \mathrm{~m} / \mathrm{s}$.
(i) Determine equations that give the displacements, x_{1} and x_{2} metres, of the particles from the origin at time t seconds.
(ii) Hence, or otherwise, show that the particles will never meet again.
(d) $\quad P\left(2 p, p^{2}\right)$ and $Q\left(2 q, q^{2}\right)$ are two points on the parabola $x^{2}=4 y$.
(i) Show that the equation of the tangent to $x^{2}=4 y$ at P is $y=p x-p^{2}$.
(ii) Show that the coordinates of T, the point of intersection of the tangents from P and Q is given by $(p+q, p q)$.
(iii) Given that $\frac{1}{p}+\frac{1}{q}=2$, find the equation of the locus of T.
(e) A resting adult's breathing cycle is 5 seconds long.

For time t seconds, $0 \leq t \leq 2 \frac{1}{2}$, air is taken into the lungs.
For $2 \frac{1}{2}<t<5$ air is expelled from the lungs.
The rate, R litres/second, at which air is taken in or expelled from the lungs can be modelled on the equation $R=\frac{1}{2} \sin \left(\frac{2 \pi}{5} t\right)$.

How many litres of air does a resting adult take into their lungs during one breathing cycle?

Left blank intentionally

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{\sqrt{x^{2}-a^{2}}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{\sqrt{x^{2}+a^{2}}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Left blank intentionally

Year 12 Mathematics Extension 1

Section I - Answer Sheet

Student Number \qquad

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample: $2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
A \bigcirc
B

C \bigcirc
D \bigcirc

- If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
$A \quad B$
B
$\mathrm{C} \bigcirc$
D \bigcirc
- If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.
A

correct
C
\bigcirc
D \bigcirc

1.

$A \bigcirc$
B \bigcirc
$\mathrm{C} \bigcirc$
D
2.

B$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$
3.
A
$\mathrm{B} \bigcirc$
C
$\mathrm{D} \bigcirc$
4.
B \bigcirc
$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$
5.
A

$\mathrm{D} \bigcirc$
6.

B \bigcirc
$\mathrm{C} \bigcirc$
A \bigcirc
B \bigcirc
$\mathrm{C} \bigcirc$
D
7.
A \bigcirc
B \bigcirc
$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$
8.

$\mathrm{B} \bigcirc$
C
$\mathrm{D} \bigcirc$
9.
10.
A
B \bigcirc
$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$
A
$\mathrm{B} \bigcirc$
$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$

Year 12
Questions 1 to 10 Multiple Choice
Solutions and Marking

Outcome Addressed in this Question

PE5 determines derivatives which require the application of more than one rule of differentiation
HE4 uses the relationship between functions, inverse functions and their derivatives
HE2 uses inductive reasoning in the construction of proofs
PE2 uses multi-step deductive reasoning in a variety of contexts
PE3 solves problems involving permutations and combinations, inequalities, polynomials, circle geometry and parametric representations
PE4 uses the parametric representation together with differentiation to identify geometric properties of parabolas
HE3 uses a variety of strategies to investigate mathematical models of situations involving binomial probability, projectiles, simple harmonic motion, or exponential growth and decay
HE7 evaluates mathematical solutions to problems and communicates them in an appropriate form

Outcome	Soluti
HE7	Question 1.
	$\cos (x+y)=\cos x \cos y-\sin x \sin y$
	Answer is A
PE5	Question 2.
	$\int \cos ^{2} 2 x d x=\int\left(\frac{1}{2}+\frac{1}{2} \cos 4 x\right) d x$
	$=\frac{1}{2} x+\frac{1}{8} \sin 4 x+C$
	$=\frac{x}{2}+\frac{1}{8} \sin 4 x+C$

Answer is D

Question 3.

HE4
Now,

$$
\begin{aligned}
& -1 \leq \frac{x}{2} \leq 1 \\
& -2 \leq x \leq 2
\end{aligned}
$$

Therefore domain is $-2 \leq x \leq 2$.

Answer is D

1 mark for correct answer

1 mark for correct answer

Question 4.

$$
\begin{aligned}
& \int_{\frac{3}{\sqrt{2}}}^{3} \frac{4}{\sqrt{9-x^{2}}} d x \\
= & {\left[4 \sin ^{-1}\left(\frac{x}{3}\right)\right]_{\frac{3}{\sqrt{2}}}^{3} } \\
= & 4 \sin ^{-1} 1-4 \sin ^{-1} \frac{1}{\sqrt{2}} \\
= & 4\left(\frac{\pi}{2}\right)-4\left(\frac{\pi}{4}\right) \\
= & 2 \pi-\pi \\
= & \pi
\end{aligned}
$$

Answer is D

Question 5.

Function is:

$$
\begin{aligned}
& f(x)=\frac{3}{x}-4 \\
& \text { i.e. } y=\frac{3}{x}-4
\end{aligned}
$$

Inverse function is:

$$
\begin{aligned}
& x=\frac{3}{y}-4 \\
& x+4=\frac{3}{y} \\
& y=\frac{3}{x+4} \\
& \text { i.e. } f^{-1}(x)=\frac{3}{x+4}
\end{aligned}
$$

Therefore,

$$
f^{-1}(4)=\frac{3}{4+4}=\frac{3}{8}
$$

Answer is C

Question 6.

The incorrect expression for part of the induction proof is:
(B) Step 2: Assume the result true for $n=k$

$$
1^{2}+3^{2}+5^{2}+\ldots+(2 k-1)^{2}=\frac{1}{3}(k+1)(2 k+1)(2 k-1)
$$

Answer is B

	Question 7.	
PE2 PE3	$6^{2}=x(x+9) \quad$ [The square of the intercept on tangent to a circle equals the product of the intercepts on the secant] $\begin{aligned} & 36=x^{2}+9 x \\ & x^{2}+9 x-36=0 \\ & (x+12)(x-3)=0 \\ & x=-12,3 \end{aligned}$ The value of x is 3 . Answer is C	1 mark for correct answer
PE3	Question 8. $5 \times 6!=3600$ Answer is \mathbf{C} Question 9.	1 mark for correct answer
PE4	Now, $x=\frac{2}{t} . \ldots A$ Rearrange A $\begin{aligned} & t=\frac{2}{x} \\ & y=2 t^{2} \ldots \ldots \ldots \ldots . . B \end{aligned}$ substitute $\quad t=\frac{2}{x} \quad$ into B $\begin{aligned} & \therefore y=2\left(\frac{2}{x}\right)^{2} \\ & \therefore y=\frac{8}{x^{2}} \end{aligned}$	
	Answer is D Question 10.	1 mark for correct answer
HE3	The particle is at rest when $\frac{d y}{d x}=0$ which occurs at the maximum and minimum turning points. i.e. $t=4 \cdot 5$ and $t=11 \cdot 5$ Answer is A	1 mark for correct answer

Outcome Addressed in this Question

PE3 solves problems involving permutations and combinations, inequalities, polynomials, circle geometry and parametric representations
HE7 evaluates mathematical solutions to problems and communicates them in an appropriate form
PE6 makes comprehensive use of mathematical language, diagrams and notation for communicating in a wide variety of situations
H4 expresses practical problems in mathematical terms based on simple given models

outcome	
	Qu
	(a)

PE3

$$
\frac{3}{x+2}<1 \quad x \neq-2
$$

$(x+2)^{2} \times \frac{3}{(x+2)}<1 \times(x+2)^{2}$

$$
3(x+2)<1(x+2)^{2}
$$

$(x+2)(3-x-2)<0$

$$
(x+2)(1-x)<0
$$

$x<-2$ or $x>1$
(b)

HE7

$$
\begin{aligned}
\frac{d y}{d x} & =\sin ^{2} x \\
\frac{d y}{d x} & =\frac{1}{2}-\frac{1}{2} \cos 2 x \\
y & =\frac{1}{2} x-\frac{1}{2} \times \frac{\sin 2 x}{2}+C \\
y & =\frac{x}{2}-\frac{1}{4} \sin 2 x+C \\
f\left(\frac{3 \pi}{4}\right)-f\left(\frac{\pi}{4}\right) & =\left(\frac{3 \pi}{8}-\frac{1}{4} \sin \frac{3 \pi}{2}+C\right)-\left(\frac{\pi}{8}-\frac{1}{4} \sin \frac{\pi}{2}+C\right) \\
& =\left(\frac{3 \pi}{8}+\frac{1}{4}\right)-\left(\frac{\pi}{8}-\frac{1}{4}\right) \\
& =\frac{\pi}{4}+\frac{1}{2}
\end{aligned}
$$

Marking Guidelines

2 Marks for complete correct solution.

1 Mark for finding one correct solution or multiplying both sides of the inequality by $(x+2)^{2}$.

3 Marks for complete correct solution

2 Marks for finding correct equation for y and correctly substituting into y for both values

1 Mark for finding correct equation for y
(c)

HE7

$$
\begin{aligned}
& 2 \sin ^{3} x-\sin x-2 \sin ^{2} x+1=0 \\
& 2 \sin ^{2} x(\sin x-1)-(\sin x-1)=0 \\
& \quad(\sin x-1)\left(2 \sin ^{2} x-1\right)=0 \\
& \therefore \sin x=1, \sin x=\frac{1}{\sqrt{2}}, \sin x=-\frac{1}{\sqrt{2}} \\
& \therefore x=n \pi+(-1)^{n} \frac{\pi}{2}, x=n \pi+(-1)^{n} \frac{\pi}{4}, x=n \pi-(-1)^{n} \frac{\pi}{4}
\end{aligned}
$$ where n is any integer.

(d)

$$
\sin x=\frac{2 t}{1+t^{2}} \text { and } \cos x=\frac{1-t^{2}}{1+t^{2}} \text { for } t=\tan \frac{x}{2}
$$

Now,

$$
\begin{aligned}
& \text { LHS }=\frac{1+\cos x}{\sin x} \\
&=\frac{1+\frac{1-t^{2}}{1+t^{2}}}{\frac{2 t}{1+t^{2}}} \\
&=\frac{1+t^{2}+1-t^{2}}{2 t} \\
&=\frac{2}{2 t} \\
&=\frac{1}{t} \\
&=R H S \\
& \therefore \frac{1+\cos x}{\sin x}=\frac{1}{t} \text { for } t=\tan \frac{x}{2} .
\end{aligned}
$$

(e)

$$
\begin{aligned}
\text { RHS } & =\frac{1}{2}[\sin (A+B)+\sin (A-B)] \\
& =\frac{1}{2}(\sin A \cos B+\cos A \sin B+\sin A \cos B-\cos A \sin B) \\
& =\frac{1}{2}(2 \sin A \cos B) \\
& =\sin A \cos B \\
& =\text { LHS }
\end{aligned}
$$

$\therefore \sin A \cos B=\frac{1}{2}[\sin (A+B)+\sin (A-B)]$

3 marks for correct solution

2 mark for factorising the equation and then solving the resulting equation correctly

1 mark for factorising correctly

2 marks for complete correct solution

1 mark for correctly substituting the t results

2 marks for complete correct solution

1 mark for correct expansions
PE6 (f) (i)

HE4	d) v) d) vi) $\begin{aligned} \beta & =2 \pi-(\alpha-2 \pi) \\ & =4 \pi-\alpha \\ \therefore f^{-1}[f(\alpha)] & =f^{-1}[f(\beta)] \quad \text { since } f(\alpha)=f(\beta) \\ & =\beta \\ & =4 \pi-\alpha \end{aligned}$	$\mathbf{2}$ marks - correct graph, clearly showing all key features 1 mark - substantial progress towards correct graph $\underline{\mathbf{2} \text { marks }}$ - correct solution 1 mark - substantial progress towards correct solution

Year Ques	Extension 1 Mathematics in 13 Solutions and Marking Guidelines	Trial HSC 2012
Outcomes Addressed in this Question		
PE3 HE2 HE3 HE6	solves problems involving circle geometry uses inductive reasoning in the construction of proofs uses a variety of strategies to investigate mathematical models of situations involving exponential growth and decay determines integrals by reduction to a standard form through a given substitution	
Outcome	Solutions	Marking Guidelines
PE3	(a)(i)(α) $\angle A P B=90^{\circ}$ (angle at the circumference in a semi-circle equals 90°) $\therefore \angle A P M+90^{\circ}=180^{\circ}$ (angle sum of straight angle MPB equals 180°) $\therefore \angle A P M=90^{\circ}$ $\angle A O M=90^{\circ}$ (given) $\therefore \angle A P M=\angle A O M=90^{\circ}$ $\therefore A O P M$ is cyclic ($A M$ subtends equal angles on the same side at O and P) $\therefore A, O, P$ and M are concyclic. (a)(i) (β)	Award 2 Correct solution. Award 1 Correct solution with insufficient reasoning provided
PE3	$A O=O P(\text { radii })$ $\therefore \angle P A O=\angle O P A$ (equal angles are opposite equal sides in $\triangle O P A$) But, $\angle O A P=\angle O M P$ (angles at the circumference in the same segment are equal) $\therefore \angle O P A=\angle O M B(=\angle O M P)$ (a) (ii)	Award 2 Correct solution. Award 1 Correct solution with insufficient reasoning provided
HE2	Show true for $n=0$, $4 \times 2^{0}+3^{3.0}=4+1=5$ which is divisible by 5 . \therefore True for $n=0$ Show true for $n=1$, $4 \times 2^{1}+3^{3.1}=8+27=35$ which is divisible by 5 . \therefore True for $n=1$ Assume true for $n=k$, i.e. $4 \times 2^{k}+3^{3 k}=5 M, M$ is an integer. Prove true for $n=k+1$, i.e. Show $4 \times 2^{k+1}+3^{3(k+1)}=5 J, J$ is an integer. $\begin{aligned} 4 \times 2^{k+1}+3^{3(k+1)} & =4 \times 2 \times 2^{k}+3^{3(k+1)} \\ & =2 \times\left(5 M-3^{3 k}\right)+3^{3 k} \times 3^{3} \\ & =2 \times 5 M-2 \times 3^{3 k}+27 \times 3^{3 k} \\ & =2 \times 5 M+25 \times 3^{3 k} \\ & =5\left(2 M+5 \times 3^{3 k}\right) \\ & =5 J, J \text { is an integer } \end{aligned}$ \therefore True for $n=k+1$. \therefore True by mathematical induction for $n \geq 0$	Award 3 Correct solution. Award 2 Attempts to prove true for $n=k+1$, after proving true for $n=0$ and using assumption. Award 1 Proves true for $n=0$.

HE3	$\begin{aligned} & \text { (b)(i)(}(\alpha) \\ & \begin{array}{rlrl} M=200-198 e^{-k t} & & & \\ \begin{aligned} \text { LHS }=\frac{d M}{d t} & =-198 .-k e^{-k t} & & =k .198 e^{-k t} \\ & =k .198 e^{-k t} & & =\text { LHS } \end{aligned} \\ & \therefore M=200-198 e^{-k t} \text { is a solution to } \frac{d M}{d t}=k(200-M) \end{array} \end{aligned}$
HE3	$\begin{aligned} & \text { (b)(i) }(\beta) \\ & t=6, M=68 \\ & 68=200-198 e^{-6 k} \\ & 198 e^{-6 k}=132 \\ & e^{-6 k}=\frac{132}{198}=\frac{2}{3} \\ & -6 k=\ln \left(\frac{2}{3}\right) \\ & k=\frac{1}{6} \ln \left(\frac{3}{2}\right) \approx 0.06757751802 \\ & \therefore k=0.068 \text { (to } 3 \text { decimal places) } \end{aligned}$
HE3	(b)(i) (γ) As $t \rightarrow \infty, M \rightarrow 200$ \therefore Limiting mass $=200 \mathrm{~kg}$ (b)(ii)(α) $\begin{aligned} & \text { LHS }=\frac{u^{3}}{u+1} \\ & \begin{aligned} \text { RHS } & =u^{2}-u+1-\frac{1}{u+1} \\ & =\frac{u^{2}(u+1)-u(u+1)+1(u+1)-1}{u+1} \\ & =\frac{u^{3}+u^{2}-u^{2}-u+u+1-1}{u+1} \\ & =\frac{u^{3}}{u+1} \\ & =\text { LHS } \end{aligned} \end{aligned}$
HE6	(b)(ii)(β) $\begin{aligned} & \int_{0}^{4} \frac{x}{1+\sqrt{x}} d x \quad u=\sqrt{x} \Rightarrow d x=2 \sqrt{x} d u=2 u d u \\ & =\int_{0}^{2} \frac{u^{2}}{1+u} \cdot 2 u d u \\ & =2 \int_{0}^{2} \frac{u^{3}}{u+1} d u \\ & =2 \int_{0}^{2}\left(u^{2}-u+1-\frac{1}{u+1}\right) d u \\ & =2\left[\frac{u^{3}}{3}-\frac{u^{2}}{2}+u-\ln (u+1)\right]_{0}^{2} \\ & =2\left[\frac{8}{3}-\frac{4}{2}+2-\ln (3)-(0-0+0-\ln (1))\right] \\ & =2\left[\frac{8}{3}-\ln (3)\right] \\ & =\frac{16}{3}-2 \ln (3) \\ & =\frac{16}{3}-\ln (9) \end{aligned}$

Award 1 for correct solution.

Award 2 for correct solution.

Award 1 for substantial progress towards solution.

Award 1 for correct solution.

Award 1 for correct solution.

Award 3

Correct solution.

Award 2

Substantial progress towards solution

Award 1

Limited progress towards solution

PE3

PE3

HE7
(e) $\frac{d V}{d t}=\frac{1}{2} \sin \left(\frac{2 \pi}{5} t\right)$

$$
\begin{aligned}
V & =\int_{0}^{\frac{5}{2}} \frac{1}{2} \sin \left(\frac{2 \pi}{5} t\right) d t \\
& =-\frac{1}{2} \cdot \frac{5}{2 \pi}\left[\cos \left(\frac{2 \pi}{5} t\right)\right]_{0}^{\frac{5}{2}} \\
& =-\frac{5}{4 \pi}[\cos \pi-\cos 0] \\
& =-\frac{5}{4 \pi} \cdot[-2] \\
& =\frac{5}{2 \pi} \text { litres. }
\end{aligned}
$$

1 mark : correct solution

1 mark : correct solution

3 marks : correct solution
2 marks : substantially correct solution

1 mark : partially correct solution

