## MATHEMATICS (EXTENSION 2)

## 2012 HSC Course Assessment Task 3 (Trial Examination) <br> June 21, 2012

## General instructions

- Working time -3 hours. (plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets + answer sheet used in the correct order within this paper and hand to examination supervisors.


## SECTION I

- Mark your answers on the answer sheet provided (numbered as page 10)


## SECTION II

- Commence each new question on a new page. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.


## STUDENT NUMBER:

\# BOOKLETS USED: .....

Class (please $\boldsymbol{\checkmark}$ )
$\bigcirc 12 \mathrm{M} 4 \mathrm{~A}-\mathrm{Mr}$ Weiss
○ $12 \mathrm{M} 4 \mathrm{~B}-\mathrm{Mr}$ Ireland
○ $12 \mathrm{M} 4 \mathrm{C}-\mathrm{Mr}$ Fletcher

Marker's use only.

| QUESTION | $1-10$ | 11 | 12 | 13 | 14 | 15 | 16 | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MARKS | $\overline{10}$ | $\overline{15}$ | $\overline{15}$ | $\overline{15}$ | $\overline{15}$ | $\overline{15}$ | $\overline{15}$ | $\overline{100}$ |

## Section I: Objective response

Mark your answers on the multiple choice sheet provided.

1. The region in the first quadrant between the $x$ axis and $y=6 x-x^{2}$ is rotated about the $y$ axis. The volume of this solid of revolution is
(A) $\int_{0}^{6} \pi\left(6 x-x^{2}\right) d x$
(C) $\int_{0}^{6} \pi x\left(6 x-x^{2}\right)^{2} d x$
(B) $\int_{0}^{6} 2 \pi x\left(6 x-x^{2}\right) d x$
(D) $\int_{0}^{6} \pi(3+\sqrt{9-y})^{2} d x$
2. What are all the values of $k$ for which the graph of $y=x^{3}-3 x^{2}+k$ will have three distinct $x$ intercepts?
(A) all $k>0$
(C) $k=0,4$
(B) all $k<4$
(D) $0<k<4$
3. Which of the following is the triple root of the equation

$$
8 x^{4}+12 x^{3}-30 x^{2}+17 x-3=0
$$

(A) $\frac{1}{2}$
(B) $-\frac{5}{4}$
(C) -3
(D) 0
4. If $n$ is a non-negative integer, then for what values of $n$ is $\int_{0}^{1} x^{n} d x=\int_{0}^{1}(1-x)^{n} d x$ true?
(A) no solution
(C) non zero $n$, only
(B) $n$ even, only
(D) all values of $n$
5. What are the coordinates of the foci of $\quad x y=18$ ?

1
(A) $(0,6),(0,-6)$
(C) $(3 \sqrt{2}, 3 \sqrt{2}),(-3 \sqrt{2},-3 \sqrt{2})$
(B) $(0,3 \sqrt{2}),(0,-3 \sqrt{2})$
(D) $(6,6),(-6,6)$
6. Which of the following inequalities is represented by the Argand diagram?

(A) $|z-1| \leq 2$
(C) $|z+1| \leq 2$
(B) $|z-i| \leq 2$
(D) $|z+i| \leq 2$
7. What does $\int \frac{d x}{(x-1)(x+2)}$ evaluate to?
(A) $\frac{1}{3} \log _{e}\left|\frac{x-1}{x+2}\right|+C$
(C) $\frac{1}{3} \log _{e}|(x-1)(x+2)|+C$
(B) $\frac{1}{3} \log _{e}\left|\frac{x+2}{x-1}\right|+C$
(D) $\left(\log _{e}|x-1|\right)\left(\log _{e}|x+2|\right)$
8. What is the value of $\int_{0}^{1} x e^{-x} d x$ ?
(A) $1-2 e$
(C) $1-2 e^{-1}$
(B) -1
(D) $2 e-1$
9. What is the value of the eccentricity of the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ ?
(A) $\frac{3}{\sqrt{13}}$
(C) $\frac{11}{\sqrt{5}}$
(B) $\frac{\sqrt{13}}{3}$
(D) $\sqrt{2}$
10. What is the value of $\frac{d y}{d x}$ at the point $(1,2)$ if $x y^{2}+2 x y=8$ ?
(A) $-\frac{5}{2}$
(C) -1
(B) $-\frac{4}{3}$
(D) $-\frac{1}{2}$

## Section II: Short answer

Question 11 (15 Marks)
Commence a NEW page.
Marks
(a) Evaluate:
i. $\int \frac{d x}{\sqrt{7-9 x-x^{2}}}$
ii. $\int \frac{d x}{x \log _{e} x}$
(b) Evaluate $\int_{1}^{2} \frac{d x}{x\left(1+x^{2}\right)}$.
(c) Evaluate $\int \frac{x}{\sqrt{1-x}} d x$.
(d) Find $\int e^{-2 x} \cos x d x$.
(a) Show that $3 i$ is a root of $P(x)=x^{4}-3 x^{3}+5 x^{2}-27 x-36$, and hence solve $P(x)=0$ completely.
(b) If $\alpha, \beta$ and $\gamma$ are roots of $3 x^{3}+4 x^{2}+5 x+1=0$, find the value of

$$
\frac{1}{\alpha^{2} \beta^{2}}+\frac{1}{\beta^{2} \gamma^{2}}+\frac{1}{\alpha^{2} \gamma^{2}}
$$

(c) Given $Q(x)=x^{4}-5 x^{3}+4 x^{2}+3 x+9$ has a root of multiplicity 2 , solve $Q(x)=0$ over $\mathbb{C}$.
(d) The roots of the polynomial equation $x^{3}-2 x^{2}+3 x+1=0$ are $\alpha, \beta$ and $\gamma$.

Find the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$.
(e) The polynomial $x^{5}-a x^{2}+b=0$ has a multiple root.

Show that $\quad 108 a^{5}=3125 b^{3}$.

Question 13 (15 Marks)
(a) Sketch the region in the Argand diagram which simultaneously satisfies the

$$
\left\{\begin{array}{l}
|z-2 i| \leq 2 \\
\operatorname{Im}(z) \geq 2
\end{array}\right.
$$

(b) What is the locus in the Argand diagram of the point $z$ such that

$$
z \bar{z}-2(z+\bar{z})=5
$$

(c) Find the value of $z^{10}$ in Cartesian form, given that

$$
z=\sqrt{2}-\sqrt{2} i
$$

(d) In the following Argand diagram, $P$ represents the point $6+a i$, and $O$ is the origin.


Find the complex number represented by the point $B$, given $\angle P O B=90^{\circ}$ and

$$
2|O B|=3|O P|
$$

(e) Two perpendicular chords $P Q$ and $X Y$ of a circle intersect at $Z$.

Copy the diagram into your writing booklet.


If $M$ is the midpoint of the chord $Q X$, prove that $M Z$ produced is perpendicular to the chord $P Y$.

Question 14 (15 Marks)
Commence a NEW page.
(a) Sketch the following graphs:
i. $\quad y=|\sin x|$ for $-2 \pi \leq x \leq 2 \pi$.
ii. $\quad y=\sqrt{x^{2}-4}$
iii. $\quad y^{2}=x^{2}-9 x$
(b) Sketch $\quad y=\frac{1}{(x-1)^{2}(x+2)}$.
(c) The diagram shows the graph of $f(x)$.


Sketch the following curves on separate diagrams, clearly indicating any turning points and asymptotes.
i. $\quad y=\frac{1}{f(x)}$
ii. $\quad y=f(|x|)$
iii. $\quad y=\log _{e}(f(x))$
iv. $y=e^{f(x)}$
(a) A solid of height 10 m stands on horizontal ground. The base of the solid is an ellipse with semi-axes of 20 m and 10 m . Horizontal cross-sections taken parallel to the base and at height $h$ metres above the base are ellipses with semi-axes $x$ metres and $\frac{x}{2}$ metres so that the centres of these elliptical cross-sections lie on a vertical straight line, and the extremitites of their semi-axes line on sloping straight lines as shown in the diagram. The top of the solid is an ellipse with semi-axes 10 m and 5 m .


Show that the volume $V \mathrm{~m}^{3}$ of the solid is given by

$$
V=\frac{\pi}{2} \int_{0}^{10}(20-h)^{2} d h
$$

and hence find the volume correct to the nearest cubic metre.
(b) The shaded region shown in the diagram below is bounded by $y=\frac{1}{x}, y=\frac{x^{2}}{8}$ and $x=1$. This region is rotated about the line $x=1$.

i. Find an integral which gives the volume of the resulting solid of revolution using the method of cylindrical shells.
ii. Find the volume of the solid of revolution.
(c) On the number plane, shade the region

$$
(x-a)^{2}+(y-b)^{2} \leq R^{2}
$$

where $R<b<a$.

Find the volume when this shape is rotated about the $y$ axis using the method of slices.
(a) i. Determine the real values of $p$ for which the equation

$$
\frac{x^{2}}{3+p}+\frac{y^{2}}{8+p}=1
$$

defines
( $\alpha$ ) an ellipse
( $\beta$ ) a hyperbola
ii. For the value $p=-4$ in the above equation, find the

- eccentricity
- coordinates of the foci, and
- the equations of the directrices
of the conic.
(b) $\quad P$ is a point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with centre at the origin $O$.

A line drawn from the origin $O$, parallel to the tangent to the ellipse at $P$, meets the ellipse at $Q$.
i. Derive the equation of the tangent at $P(a \cos \theta, b \sin \theta)$.
ii. Hence or otherwise, prove that the area of $\triangle O P Q$ is independent of the position of $P$.
(c) i. Find the equation of the normal at $P(a \sec \theta, b \tan \theta)$ to the hyperbola

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

ii. This normal intersects the $x$ and $y$ axes at $Q$ and $R$ respectively. $M(x, y)$ is the midpoint of $Q R$. Find the equation of the locus of $M$ as $P$ varies on the hyperbola.

## End of paper.

$$
\text { NOTE: } \ln x=\log _{e} x, x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}+C, \quad n \neq-1 ; \quad x \neq 0 \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x+C, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}+C, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x+C, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x+C, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x+C, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x+C, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}+C, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C, \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C
\end{aligned}
$$

## Answer sheet for Section I

Mark answers to Section I by fully blackening the correct circle, e.g

## STUDENT NUMBER:

Class (please $\boldsymbol{V}$ )12M4A - Mr Weiss
○ 12M4B - Mr Ireland
○ 12M4C - Mr Fletcher


2012 Ext. 2 - Test 3
711)
a)

$$
\begin{aligned}
& \text { i/ } \int \frac{d x}{\sqrt{7-9 x-x^{2}}} \\
& =\int \frac{d x}{\sqrt{\frac{109}{4}-\left(\frac{9}{2}-x\right)^{2}}} \\
& =\sin ^{-1}\left(\frac{2 x+9}{\sqrt{109}}\right)+c
\end{aligned}
$$

ii) $\int \frac{\frac{1}{x}}{\ln x} d x$

$$
=\ln (\ln |x|)+c
$$

b) $\int_{1}^{2} \frac{d x}{x\left(1+x^{2}\right)}$

Partial fractions

$$
\begin{aligned}
\frac{1}{x\left(1+x^{2}\right)} & =\frac{a}{x}+\frac{b x+c}{1+x^{2}} \\
1 & \therefore a\left(1+x^{2}\right)+b^{2}+c \\
\therefore a+b & =0 \\
\therefore & =0 \\
a & =1 \quad b=-1 \\
\int \frac{d x}{2\left(1+x^{2}\right)} & =\int_{1}^{2} \frac{1}{x}-\frac{x}{1+x^{2}} \\
& \left.=\ln x-\frac{1}{2} \ln \left(\operatorname{lin} x^{2}\right)\right]^{2} \\
& =\ln 2-\ln 1-\frac{1}{2} \ln 5+\frac{1}{2} \ln 2 \\
& =\frac{3}{2} \ln 2-\frac{1}{2} \\
& =\ln 5 \\
& =0 \cdot 235 \sqrt{\frac{2}{5}}
\end{aligned}
$$

c)

$$
\begin{aligned}
& \int \frac{x}{\sqrt{1-x}} d x \\
& u^{2}=1-x \\
& 2 u d u=-d x \\
& \therefore \int\left(\frac{1-u^{3}}{u}\right)-2 u d u \\
&= \int \frac{-2 u}{u^{2}}+\frac{2 u^{22}}{x^{2}} d u \\
&= \frac{2 u^{3}}{3}-2 u+c \\
&= \frac{2}{3}(1-x)^{3 / 2}-2(1-x)^{1 / 2}+c
\end{aligned}
$$

d) $\int e^{u} d v$

$$
\begin{aligned}
I & =e^{-2 x} \sin x+2 \int \sin x e^{-2 x} d x \\
& =e^{-2 x} \sin x-2 \cos x e^{-2 x}-4 \int \cos x e^{-2 x} d x \\
\therefore 5 I & =e^{-2 x} \sin x-2 \cos x e^{-2 x} \\
& =\frac{1}{5} e^{-2 x}(\sin x-2 \cos x)+c
\end{aligned}
$$

QI- Q10

1. B
2. A
3. D
4. $A$
5. $A$ 8. C
6. D
7. D
8. $B$

10 B

Q12
(a)

$$
\begin{aligned}
P(x) & =x^{4}-3 x^{3}+5 x^{2}-27 x-36 \\
P(3 i) & =(3 i)^{4}-3(3 i)^{3}+5(3 i)^{2}-27(3 i)-36 \\
& =81+81 i-45-81 i-36 \\
& =0
\end{aligned}
$$

$\therefore 3 i$ is a root
Real coeffe $\therefore-3 i$ also a rot.

$$
\begin{aligned}
P(x) & =(x+3 i)(x-3 i) Q(x) \\
& =\left(x^{2}+9\right)\left(x^{2}-3 x-4\right) \\
& =\left(x^{2}+9\right)(x-4)(x+1)
\end{aligned}
$$

$\therefore$ roots are $\pm 3 i, 4,-1$
(ALT. use sum \& product of roots).
(b)

$$
\begin{aligned}
3 x^{3}+4 x^{2}+5 x+1 & =0 \\
\frac{1}{\alpha^{2} \beta^{2}}+\frac{1}{\alpha^{2} \gamma^{2}}+\frac{1}{\beta^{2} \gamma^{2}} & =\frac{\alpha^{2}+\beta^{2}+\gamma^{2}}{(\alpha \beta \gamma)^{2}} \\
& =\frac{(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma)}{(\alpha \beta \gamma)^{2}} \\
& =\frac{\left(-\frac{4}{3}\right)^{2}-2\left(\frac{5}{3}\right)}{\left(-\frac{1}{3}\right)^{2}} \\
& =-14
\end{aligned}
$$

(A1T: Create the equation with roots equal to $\alpha^{2}, \beta^{2}$ and $\gamma^{2}$, and proceed from there.).

Q12
(c)

$$
\begin{aligned}
& Q(x)=x^{4}-5 x^{3}+4 x^{2}+3 x+9 \\
& Q^{\prime}(x)=4 x^{3}-15 x^{2}+8 x+3
\end{aligned}
$$

First, find roots of $\theta^{\prime}(x)=0$.

$$
Q^{\prime}(1)=0 \quad \text { but } \quad Q(1) \neq 0
$$

$Q^{\prime}(3)=0$, and $Q(3)=0 \quad \therefore x=3$ is the double root.

$$
\left.\begin{array}{rl}
\therefore Q(x) & =(x-3)^{2} \cdot S(x) \\
& =(x-3)^{2}\left(x^{2}+x+1\right) \quad \text { (b yinspection or } \\
\text { otherivin }
\end{array}\right)
$$

(d)

$$
P(x)=x^{3}-2 x^{2}+3 x+1=0
$$

$\alpha, \beta, \gamma$ ascents, $\therefore$

$$
\begin{aligned}
& \alpha^{3}-2 \alpha^{2}+3 \alpha+1=0 \\
& \beta^{3}-2 \beta^{2}+3 \beta+1=0 \\
& \gamma^{3}-2 \gamma^{2}+3 \gamma+1=0
\end{aligned}
$$

adding:

$$
\alpha^{3}+\beta^{3}+\gamma^{3}-2\left(\alpha^{2}+\beta^{2}+\phi^{2}\right)+3(\alpha+\beta+\gamma)+3=0
$$

$\checkmark(\operatorname{mathod})$.

Now

$$
\text { Now } \begin{aligned}
& \alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma) \\
&=(2)^{2}-2(3)=-2 \\
& \therefore \alpha^{3}+\beta^{3}+\gamma^{3}-2(-2)+3(2)+3=0 \\
& \therefore \alpha^{3}+\beta^{3}+\gamma^{3}=-13 .
\end{aligned}
$$

$\int($ find answer)

Q12
(e)
$P(x)=x^{5}-a x^{2}+b=0$ has a multiple root.
call it $\alpha$.
Now $P^{\prime}(x)=5 x^{4}-2 a x$.
we have $P(\alpha)=P^{\prime}(\alpha)=0$

$$
\begin{align*}
\therefore \quad \alpha^{5}-a \alpha^{2}+b & =0  \tag{0}\\
5 \alpha^{4}-2 a \alpha & =0 \tag{2}
\end{align*}
$$

From (2),$\quad \alpha\left(5 \alpha^{3}-2 a\right)=0$

$$
\therefore \alpha=0 \quad \text { or } a^{3}=\frac{2 a}{5}
$$

But $P(0) \neq 0 \quad \therefore \quad \alpha^{3}=\frac{2 a}{5} \quad \therefore \quad \alpha=\left(\frac{2 a}{5}\right)^{\frac{1}{3}}$
sub. into (1):

$$
\left(\frac{2 a}{5}\right)^{\frac{5}{3}}-a \cdot\left(\frac{2 a}{5}\right)^{\frac{2}{3}}=-b
$$

Factorise:-

$$
\begin{aligned}
& a^{\frac{5}{3}} \cdot\left(\frac{2}{5}\right)^{\frac{2}{3}}\left(\frac{2}{5}-1\right)=-b \\
& a^{\frac{5}{3}} \cdot\left(\frac{2}{5}\right)^{\frac{2}{3}} \cdot\left(-\frac{3}{5}\right)=-b
\end{aligned}
$$

Cube both sides:

$$
\begin{aligned}
a^{5}\left(\frac{2}{5}\right)^{2}\left(-\frac{3}{5}\right)^{3} & =-b^{3} \\
\frac{-108 a^{5}}{3125} & =-b^{3} \\
\quad \therefore \quad 108 a^{5} & =3125 b^{3}
\end{aligned}
$$

Q 13
(a) $|z-2 i| \leq 2$ and $\operatorname{Im}(z) \geq 2$

(b) $z \bar{z}-2(z+\bar{z})=5$.

Let $z=x+i y \quad \therefore \quad \bar{z}=x-i y$

$$
\therefore z \bar{z}=x^{2}+y^{2}, \quad z+\bar{z}=2 x
$$

$$
\begin{aligned}
& \therefore \quad x^{2}+y^{2}-4 x=5 \\
& x^{2}-4 x+4+y^{2}=9 \\
&(x-2)^{2}+y^{2}=3^{2}
\end{aligned}
$$

This is a circle, centre $(2,0)$, radius 3

$$
O R
$$



SNore:
full marks requires a description of $\mathrm{T}=\mathrm{C}$ locus or a sketch depicting it.

Note: Failure to eliminate $\alpha=0$ as a possibility costs a mark.]

$$
\text { (c) } \begin{aligned}
z & =\sqrt{2}-\sqrt{2} i \\
& =2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i\right) \\
& =2 \operatorname{cis}\left(-\frac{\pi}{4}\right) \\
\therefore \quad z^{10} & =2^{10} \cdot \operatorname{cis}\left(-\frac{5 \pi}{2}\right)
\end{aligned}
$$

(e)


Given: $P Q \perp X Y$

$$
m x=m Q
$$

Let $M z$ produced meat $P Y$ at $N$. To prove: MN $\perp$ MY

Since $\angle X Z Q=90^{\circ}$ and $m x=m Q$,
$\therefore X Q$ is the diameter of a circle, centre $M$. that passes through $Z$. [converse to angle in a]
Thees $M z=m x=m Q$

Let $\angle Y P Q=\alpha$
$\therefore \angle Z X Q=\propto \quad$ (angles standing ion same are $Q y$ )
$\therefore \angle X Q Z=90-\alpha$ (angle sum of $\triangle X Z Q$, given

$$
\left.\angle X Z Q=90^{\circ}\right)
$$

Now $\angle M Z Q=\angle M Q Z$ (base angles of

$$
=90-\alpha
$$

Thus $\angle P Z N=\angle M Z Q \quad$ (vertically opposite $<j$ ) by a factor of $\frac{3}{2}$.

$$
\begin{align*}
\therefore \overrightarrow{O B} \text { represents } & \frac{3}{2} \cdot-i \cdot(b+a i) \\
= & -9 i+\frac{3 a}{2} \tag{1}
\end{align*}
$$

$\therefore B$ represents $\frac{3 a}{2}-9 i$.


(Q15)
a)


Using sinilar triangles

$$
\begin{aligned}
& \frac{20-x}{10}=\frac{h}{10} \\
& \text { I } 20-h
\end{aligned}
$$

Area of slice $A=\pi x \frac{\pi}{2}$

$$
=\frac{\pi}{2}(20-2)^{2}
$$

Volume of sariel

$$
\begin{aligned}
V & =\lim _{S \rightarrow 0} \sum_{h=0}^{10} \frac{\pi}{2}(20-k)^{2} d t \\
V & =\frac{\pi}{2} \int_{0}^{10}(20-h)^{2} d h \\
& \left.=-\frac{\pi}{6}(20-k)^{3}\right]_{0}^{i} \\
& =-\frac{\pi}{6}\left(10^{3}-20^{3}\right) \\
& =\frac{7000 \pi n^{3}}{6} \\
& \left.=3665 \mathrm{~m}^{3}(\text { narest m})^{3}\right)
\end{aligned}
$$

b)

$$
y=\frac{1}{x} \text { and } y=\frac{x^{2}}{8}
$$

$$
\begin{aligned}
\therefore \quad x^{3} & =8 \\
x & =2
\end{aligned}
$$


c)


Rutation about $y$-asis
Pra $=\pi\left(R^{2}-r^{2}\right)$
Now $R=a+\sqrt{R^{2}-(y-b)^{2}}$

$$
r=a-\sqrt{R^{2}-(y-b)^{2}}
$$

$V_{\text {sliee }}=\pi(R+r)(R-r) . \hat{y} y$

$$
\begin{aligned}
V_{\sin =} & =\pi(2 a)\left(2 \sqrt{R^{2}-(y-b)^{3}}\right) d y \\
V & =4 \pi a \int_{b-R}^{b+R} \sqrt{R^{2}-(y-b)^{2}} d y \\
& =4 \pi a \cdot \frac{i}{2} \pi R^{2} \quad \text { sumi-circle } \\
& =2 \pi^{2} R^{2} a u^{3} \quad
\end{aligned}
$$

Q16) (a) $\frac{x^{2}}{3+p}+\frac{y^{2}}{s+p}=1$
(i) a) ellysse of $3+p>0$
and $8+p>0$

$$
\therefore p>-3
$$

18) Lugrembula of $3+p>0$
ande $8+p<0$
$\because$ Not pussible
नor if $3+p<0$ and stp>0

$$
\therefore \quad-8<p<3
$$

(ii)
if $p=-4$

$$
\begin{aligned}
& \frac{x^{2}}{-1}+\frac{y^{2}}{4}=1 \\
& \frac{y^{2}}{4}-\frac{x^{2}}{1}=1
\end{aligned}
$$

Now $\quad b^{2}=a^{2}\left(e^{2}-1\right)$

$$
\begin{aligned}
& 1=4\left(e^{2}-1\right) \\
& e=+\frac{\sqrt{5}}{2}
\end{aligned}
$$

foci $(0,+\sqrt{5})$
durictrives $y= \pm \frac{4}{\sqrt{5}}$
vertices $(0, \pm 2)$
$(3)$

$$
\text { (i) } \begin{aligned}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} & =1 \\
\frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \frac{d y}{d x} & =0 \\
\frac{d y}{d x} & =\frac{-2 x}{a^{2}} \times \frac{b^{2}}{2 y} \\
& =\frac{-b^{\alpha} x \cos \theta}{a^{2}+b \sin \theta}
\end{aligned}
$$

eogn of torngart

$$
y-b \sin \theta=\frac{-b \cos \theta}{a \sin \theta}(x-a \cos \theta)
$$

$a y \sin \theta-a b \sin ^{2} \theta--b x \cos \theta+a b \cos ^{2} \theta$
$3 x \cos \theta+a_{y} \sin \theta=a b\left(\sin ^{2} \theta+\cos ^{2} \theta\right)$

(ii)

equ of $0 \theta \quad y=\frac{-b \cos \theta x}{a \sin \theta}$

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{1}{b^{2}} \frac{b^{2} \cos ^{2} \theta x^{2}}{a^{2} \sin ^{2} \theta}=1 \\
& \sin ^{2} \theta x^{2}+\cos ^{2} \theta x^{2}=a^{2} \sin ^{2} \theta \\
& \therefore x^{2}=a^{2} \sin ^{2} \theta \\
& x=a \sin \theta
\end{aligned}
$$

from diagram

$$
\begin{aligned}
x & =a \sin \theta \\
\therefore y & =-b \cos \theta
\end{aligned}
$$

Dist from $P$ to $O Q$
$O Q$

$$
b \cos \theta x+a \sin \theta y=0
$$

$P \quad(a \cos \theta, b \sin \theta)$
$\rightarrow$ Dist $=\frac{a b \cos ^{2} \theta+a b \sin ^{2} \theta}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}$

$$
=\frac{a b}{\sqrt{b^{2} \cos ^{2} a+a^{2} \sin ^{2} \theta}}
$$

dist $O Q=\sqrt{a^{2} \sin ^{2} \theta+b^{2}} \cos ^{2} \theta$
$\Delta$ Area $=\frac{1}{2} \cdot O Q \cdot$ in dist from $?$

$$
=\frac{1}{2} \frac{a b}{\sqrt{b^{2} \cos ^{2} b+a^{2} \sin ^{2} \theta}} \times \sqrt{a^{2} \sin ^{2} \theta+b^{2} \cdot \cos ^{2}}
$$

$=\frac{a b}{2}$ indep of $P$.

Q16-continued)
c) eqn. of normed at $P$
(i) $a x \sin \theta+b y=\left(a^{2}+b^{2}\right) \tan \theta$
iii) at $Q \quad y=0$

$$
\begin{aligned}
\therefore \quad x & =\frac{\left(a^{2}+b^{2}\right) \tan \theta}{a \sin \theta} \\
& =\frac{\left(a^{2}+b^{2}\right) \sec \theta}{a}
\end{aligned}
$$


at $M$ midpoint of $R Q$

$$
x=\frac{1}{2 a}\left(a^{2}+b^{2}\right) \sec \theta \quad y=\frac{1}{2 b}\left(a^{2}+b^{2}\right) \tan 0
$$

locales of $M$

$$
\begin{aligned}
& (2 a x)^{2}-(2 b y)^{2}=\left(a^{2}+b^{2}\right)^{2}\left(\sec ^{2} \theta-\tan ^{2} \theta\right) \\
\therefore \quad & 4 a^{2} x^{2}-4 b^{2} y^{2}=\left(a^{2}+b^{2}\right)^{2}
\end{aligned}
$$

which is another hyperbola.

Derivation of clio/

$$
\begin{aligned}
\frac{2 x}{a^{2}}-\frac{2 y}{b^{2}} \frac{d y}{a x} & =0 \\
\frac{d y}{d x} & =\frac{x b^{2}}{4 a^{2}} \\
& =\frac{b^{k} x \sec \theta}{a^{2} x \tan \theta}
\end{aligned}
$$

eqn of normal $\quad y-b \tan \theta=\frac{-a \tan \theta}{b \sec \theta}(x-a \sec \theta)$

$$
\begin{aligned}
a x \tan \theta+b y \sec \theta & =\left(a^{2}+b^{2}\right) \sec \theta \tan \theta \\
(\div \sec \theta) a x \sin \theta+b y & =\left(a^{2}+b^{2}\right) \tan \theta \\
O R \quad \frac{a x}{\sec \theta}+\frac{b y}{\tan \theta} & =a^{2}+b^{2}
\end{aligned}
$$

