

Penrith Selective High School

2012

Higher School Certificate Examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Circle the correct answer to Questions 1-10 on the multiple choice answer sheet provided at the back of this paper
- Show all necessary working in Questions 11-14

Total Marks - 70

Section I Pages 2-4

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

Pages 5-9

60 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

Student Number: _____

Students are advised that this is a trial examination only and cannot in any way guarantee the content or format of the 2012 Higher School Certificate Examination.

SECTION 1: Circle the correct answer on the multiple choice answer sheet provided

- y = f(x) is a linear function with slope $\frac{1}{3}$, find the slope of $y = f^{-1}(x)$. Q1.
 - (A) 3

(C) -3

- (B) $\frac{1}{3}$ (D) $-\frac{1}{3}$
- Q2. The interval joining the points A(-3,2) and B(-9,y) is divided externally in the ratio 5:3 by the point P(x, -13). What are the values of x and y?
 - (A) x = -27, y = 22

(B) x = 27, y = 4

(C) x = 6, y = 12

- (D) x = -18, y = -4
- The value of $\lim_{x\to 0} \frac{\sin\frac{\pi x}{5}\cos\frac{\pi x}{5}}{4x} =$ Q3.

- (D) $\frac{\pi}{20}$
- Q4. Part of the graph of y = P(x), where P(x) is a polynomial of degree five, is shown below. This graph could be part of which of the following polynomials?

- (A) $P(x) = (x+5)^3(x-5)^2$
- (B) $P(x) = (x+1)(x+5)^4$
- (C) $P(x) = (x-5)^5$

(D) $P(x) = (x-1)^4(x+5)$

Q5. Using $u = x^2 + 1$, the value that is equal to $\int_0^1 3x(x^2 + 1)^5 dx$ is

(A)
$$\frac{1}{4}$$

(B)
$$\frac{16}{3}$$

(C)
$$\frac{63}{4}$$

Q6. The number N of animals in a population at time t years is given by $N = 250 + Ae^{kt}$ for constants A > 0 and k > 0. Which of the following is the correct differential equation?

(A)
$$\frac{dN}{dt} = k(N - 250)$$

(B)
$$\frac{dN}{dt} = k(N + 250)$$

(C)
$$\frac{dN}{dt} = -k(N - 250)$$

(D)
$$\frac{dN}{dt} = -k(N + 250)$$

Q7. Which of the following represents f'(x) if $f'(x) = \cos^{-1} 3x + x \cos^{-1} 3x$?

(A)
$$\cos^{-1} 3x - \frac{x+1}{\sqrt{9-x^2}}$$

(B)
$$\cos^{-1} 3x - \frac{3(x+1)}{\sqrt{1-9x^2}}$$

(C)
$$\cos^{-1} 3x + \frac{x-1}{\sqrt{9-x^2}}$$

(D)
$$\cos^{-1} 3x + \frac{3(x-1)}{\sqrt{1-9x^2}}$$

Q8. AC is a tangent to the circle at the point N, AB is a tangent to the circle at the point M and BC is a tangent to the circle at the point L. Find the exact length of AM if CL is 6 cm and BL is 2 cm.

(A) 3 cm

(B) 4 cm

(C) 5 cm

- (D) 6 cm
- Q9. A football is kicked at an angle of φ to the horizontal. The position of the ball at time t seconds is given by $x = Vt \cos \varphi$ and $y = Vt \sin \varphi \frac{1}{2}gt^2$ where g m/s² is the acceleration due to gravity and V m/s is the initial velocity of projection. What is the maximum height reached by the ball?
 - (A) $\frac{V\sin\varphi}{g}$

(B) $\frac{g\sin\varphi}{V}$

(C) $\frac{V^2 \sin^2 \varphi}{2g}$

- (D) $\frac{g \sin^2 \varphi}{2V^2}$
- Q10. What is the term that is independent of x in the expansion of $\left(5x^2 \frac{3}{x}\right)^{12}$?
 - (A) $^{12}C_4 \times 5^8 \times (-3)^4$

(B) $^{12}C_4 \times 5^4 \times (-3)^8$

(C) $^{12}C_8 \times 5^8 \times (-3)^4$

(D) $^{12}C_8 \times 5^4 \times (-3)^8$

SECTION 2

Question 1 (15 marks) Start on a new page **Marks**

a) Solve
$$\frac{2x+3}{x-5} \ge 1$$
 for all real x .

- b) For $f(x) = -4\sin^{-1}\left(\frac{2x}{3}\right)$
 - i) State the domain and range 2
 - ii) Hence or otherwise, sketch f(x), marking clearly any end points. 1
- c) Find the reminder when $P(x) = 5x^3 12x + 7$ is divided by x + 3.
- d) Find the area between the curve $y = \cos^2 2x$ and the x-axis from x = 0 and $x = \frac{\pi}{6}$
- e) Use the substitution $u = e^x$ to find: $\int \frac{dx}{e^x + 9e^{-x}}$
- f) i) Find the equation of the tangent to the curve $y = e^{\sin x} + x^2$ at the point where $x = \pi$.
 - ii) Find the obtuse angle between the line $\frac{x}{2} + \frac{y}{5} = 1$ and the tangent found in part i). Give your answer to the nearest minute.

Question 2

(15 marks) Start on a new page

Marks

- A particle moves in a straight line and its position at a time t is given by $x = a\cos(9t + \theta)$. The particle is initially at the origin moving with a velocity of 15 m/s in the negative direction.
 - i) Show that the particle is undergoing simple harmonic motion.
- 1

ii) Find the period of the motion.

1

iii) Find the value of the constants a and θ .

- 2
- iv) Find the position of the particle after 6 seconds, correct your answer to 2 decimal places.
- 1
- b) A curve is defined by the parametric equations x = t 5, $y = t^2 25$.
 - i) Find $\frac{dy}{dx}$ in terms of t.

- 1
- ii) Find the equation of the tangent to the curve at the point where t = -6.
- 1
- iii) Express the equation of this curve in the simplest Cartesian form.
- 1
- Taking x = 3 as the first approximation for the root of $\tan x = 1 \log_e x$, use Newton's method to find a second approximation and correct your answer to 4 significant figures.
- 2
- d) Two of the roots of the cubic polynomial $P(x) = 4x^3 bx^2 64x 16$ are reciprocals of each other, and two of the roots of P(x) are of opposite signs of each other.
 - i) Find the value of b.

2

ii) Factorise P(x) completely.

- 1
- e) Find the greatest coefficient in the expansion of $(4a + 9)^{17}$. Express your answer in index form.

a) A large industrial container is in the shape of a paraboloid, which is formed by rotating the parabola $y = \frac{1}{4}x^2$ around the y-axis.

Liquid is poured into the container at the rate of 6 m³ per minute.

- i) Prove that the volume V of liquid in the container when the depth of liquid is h, is given by $V = 2\pi h^2$.
- ii) At what rate is the height of the liquid rising when the depth is 5 m? 2 Leave your answer in exact form.
- iii) If the container is 12 m high, how long will it take to fill the container? Leave your answer to two decimal places.
- b) i) Use mathematical induction to prove $4(1^3 + 2^3 + 3^3 + \dots + n^3) = n^2(n+1)^2$ for all positive integers n.
 - ii) Hence find the value of $\lim_{n\to\infty} \left(\frac{1^3 + 2^3 + 3^3 + \dots + n^3}{n^4} \right)$

Question 3 continued

c) In the diagram below, AB is the diameter of a circle with centre O. The radius OC is drawn perpendicular to AB. The chords CD and CE intersect the diameter at the points X and Y respectively.

Copy the diagram before attempting this question.

i) Prove that
$$\angle CBA = \angle CAB = 45^{\circ}$$
.

ii) Prove that
$$\angle CBD = \angle CXB$$
.

d) Assume that the rate at which a body cools in air is proportional to the difference between its temperature *T* and the constant temperature *P* of the surrounding air.

The body of the murder victim is discovered at 1am when its temperature is 33.5° C. Two hours later its temperature has fallen to 28° C. The body is cooling according to the equation $T = P + Ae^{kt}$, where t is the time in minutes and k and A are constants. If the room temperature remains constant at 22° C and assuming normal body temperature is 37° C, calculate the time the victim passed away to the nearest minute.

2

When considering motion in a straight line, prove that i) a)

2

$$\frac{d}{dx}\left(\frac{1}{2}v^2\right) = \ddot{x}$$

- An object moving in a straight line has an acceleration given by ii) $\ddot{x} = x^2(4 - x^{-3})$ where x is the displacement in metres. When the object is 1 metre to the right of the origin, it has a speed of 3 m/s. Find its speed to 2 decimal places when it is 5 metres to the right of the origin.
- An object is projected with velocity $V \text{ ms}^{-1}$ from a point O at an angle of b) elevation α . Axes x and y are taken horizontally and vertically through 0. The object just clears two vertical chimneys of height h meters at horizontal distance of m metres and n metres from 0. The acceleration due to gravity is taken as 10 ms⁻² and air resistance is ignored.

- Show that the expression of the particle after time t seconds for the i) 2 horizontal displacement is $x = Vt \cos \alpha$ and the vertical displacement is $y = Vt \sin \alpha - \frac{1}{2}gt^2$.
- Show that $V^2 = \frac{5m^2(1 + \tan^2 \alpha)}{m \tan \alpha h}$ ii) 2
- Show that $\tan \alpha = \frac{h(m+n)}{mn}$ 3 iii)
- It is given that $(1+x)^{2n} = \sum_{k=0}^{2n} {2n \choose k} x^k$. c)

i)
$$\sum_{k=0}^{2n} {2n \choose k} = 4^n$$
ii)
$$\sum_{k=0}^{2n} {2n \choose k} \frac{1}{k+1} = \frac{4^{n+1}-2}{4n+2}$$
3

ii)
$$\sum_{k=0}^{2n} {2n \choose k} \frac{1}{k+1} = \frac{4^{n+1}-2}{4n+2}$$
 3

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - a^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

Multiple Choice Answer Sheet

1.	А	В	C	D
2.	Α	В	С	D
_	_	_	_	_

3.	Α	В	C	U

4.	Α	В	С	D

2012 HSC Ext 1 Trial Exam Solution

Section 1

Q1. A
$$y = mx + b$$
$$y = \frac{1}{3}x + b$$
inverse function

$$x = \frac{1}{3}y + b$$

$$y = 3x - b$$

$$\therefore m = 3 \text{ for } f^{-1}(x)$$

Q2. D
$$A(-3,2) \quad B(-9,y)$$
ratio -5: 3 (externally)
$$P(x,-13)$$

$$x = \frac{-5 \times -9 + 3 \times -3}{-5 + 3}$$

$$x = -18$$

$$-13 = \frac{-5 \times y + 3 \times 2}{-5 + 3}$$

$$26 = -5y + 6$$

$$y = -4$$

Q3. D
$$\frac{\sin \frac{\pi x}{5} \cos \frac{\pi x}{5}}{4x}$$

$$= \lim_{x \to 0} \frac{\frac{1}{2} \sin \frac{2\pi x}{5}}{4x}$$

$$= \frac{1}{2} \times \frac{2\pi}{20}$$

$$= \frac{\pi}{20}$$

Q4. B

Q5. C

$$u = x^2 + 1$$
 $du = 2xdx$
 $x = 1$ $u = 2$
 $x = 0$ $u = 1$

$$\int_0^1 3x(x^2 + 1)^5 dx$$

$$= \frac{3}{2} \int_0^1 (x^2 + 1)^5 \times 2x dx$$

$$= \frac{3}{2} \int_1^2 u^5 du$$

$$= \frac{3}{2} \left[\frac{u^6}{6} \right]_1^2$$

$$= \frac{63}{2}$$

Q6. A
$$N = 250 + Ae^{kt}$$

$$\frac{dN}{dt} = kAe^{kt}$$

$$\frac{dN}{dt} = k(N - 250)$$

Q7. B
$$f(x) = \cos^{-1} 3x + x \cos^{-1} 3x$$

$$f'(x) = \frac{-3}{\sqrt{1 - 9x^2}} + \frac{-3x}{\sqrt{1 - 9x^2}} + \cos^{-1} 3x$$

$$f'(x) = \cos^{-1} 3x - \frac{3(x+1)}{\sqrt{1 - 9x^2}}$$

Q8. B

$$CL = CN = 6 \text{ cm}$$

 $LB = BM = 2 \text{ cm}$
 $AN = AM = x \text{ cm}$
 $(x + 2)^2 + 8^2 = (x + 6)^2$
 $x^2 + 4x + 4 + 64 = x^2 + 12x + 36$
 $8x = 32$
 $x = 4$

Q9. C

Maximum height when $\dot{y} = 0$

$$y = Vt \sin \varphi - \frac{1}{2}gt^{2}$$

$$\dot{y} = V \sin \varphi - gt$$

$$V \sin \varphi - gt = 0$$

$$t = \frac{V \sin \varphi}{g}$$

Maximum height

$$y = V \times \frac{V \sin \varphi}{g} \times \sin \varphi - \frac{1}{2}g \left(\frac{V \sin \varphi}{g}\right)^{2}$$
$$y = \frac{V^{2} \sin^{2} \varphi}{2g}$$

Q10. D
$$\left(5x^2 - \frac{3}{x}\right)^{12}$$

$$T_{r+1} = {}^{12}C_r(5x^2)^{12-r} \times \left(-\frac{3}{x}\right)^r$$

$$T_{r+1} = {}^{12}C_r \times 5^{12-r} \times (-3)^r \times x^{24-2r} \times x^{-r}$$

$$T_{r+1} = {}^{12}C_r \times 5^{12-r} \times (-3)^r \times x^{24-3r}$$
 Term independent of x , so $24 - 3r = 0$
$$r = 8$$

$$T_9 = {}^{12}C_8 \times 5^4 \times (-3)^8$$

Section 2

Q1.

a)
$$\frac{2x+3}{x-5} \ge 1$$

$$(2x+3)(x-5) \ge (x-5)^2 \qquad x \ne 5$$

$$2x^2 - 7x - 15 \ge x^2 - 10x + 25$$

$$x^2 + 3x - 40 \ge 0$$

$$(x+8)(x-5) \ge 0$$

$$x \le -8, \ x > 5$$

b) i)

$$f(x) = -4\sin^{-1}\left(\frac{2x}{3}\right)$$

Domain:

$$-1 \le \frac{2x}{3} \le 1$$
$$-\frac{3}{2} \le x \le \frac{3}{2}$$

$$-2\pi \le y \le 2\pi$$

c)

$$P(x) = 5x^3 - 12x + 7$$
 is divided by $x + 3$
 $R(x) = P(-3) = 5 \times (-3)^3 - 12 \times (-3) + 7$
 $R(x) = -92$

$$A = \int_0^{\frac{\pi}{6}} \cos^2 2x \, dx$$

$$A = \frac{1}{2} \int_0^{\frac{\pi}{6}} (\cos 4x + 1) dx$$

$$V = \frac{1}{2} \left[\frac{1}{4} \sin 4x + x \right]_0^{\frac{\pi}{6}}$$

$$V = \frac{1}{2} \left[\frac{1}{4} \times \frac{\sqrt{3}}{2} + \frac{\pi}{6} \right]$$

$$V = \frac{\sqrt{3}}{16} + \frac{\pi}{12}$$
 units³

e)
$$u = e^{x}$$

$$du = e^{x} dx$$

$$dx = \frac{1}{u} du$$

$$\int \frac{dx}{e^{x} + 9e^{-x}}$$

$$= \int \frac{1}{u + \frac{9}{u}} \times \frac{1}{u} du$$

$$= \int \frac{u}{u^{2} + 9} \times \frac{1}{u} du$$

$$= \int \frac{du}{u^{2} + 9}$$

$$= \frac{1}{3} \tan^{-1} \left(\frac{u}{3}\right) + C$$

$$= \frac{1}{3} \tan^{-1} \left(\frac{e^{x}}{3}\right) + C$$

f) i)

$$y = e^{\sin x} + x^{2}$$

$$\frac{dy}{dx} = \cos x e^{\sin x} + 2x$$
at $x = \pi$, $y = 1 + \pi^{2}$

$$\frac{dy}{dx} = \cos \pi e^{\sin \pi} + 2\pi$$

$$\frac{dy}{dx} = 2\pi - 1$$
Equation of tangent is

$$(y-1-\pi^2) = (2\pi - 1)(x - \pi)$$

$$y = (2\pi - 1)x - 2\pi^2 + \pi + \pi^2 + 1$$

$$y = (2\pi - 1)x - \pi^2 + \pi + 1$$

ii)
$$\frac{x}{2} + \frac{y}{5} = 1$$

 $5x + 2y = 10$
 $y = -\frac{5}{2}x + 10$
 $m_1 = -\frac{5}{2}$ $m_2 = 2\pi - 1$
 $\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$
 $\tan \theta = \left| \frac{-\frac{5}{2} - (2\pi - 1)}{1 + \left(-\frac{5}{2}\right) \times (2\pi - 1)} \right|$
 $\theta = 32^{\circ}31'$ (nearest minute)

obtuse angle = $147^{\circ}29'$ (nearest minute)

a) i)

$$x = a\cos(9t + \theta)$$

$$\dot{x} = -9a\sin(9t + \theta)$$

$$\ddot{x} = -81a\cos(9t + \theta)$$

$$\ddot{x} = -81x$$

As the particle's motion can be described in the form $\ddot{x} = -n^2 x$, where n = 9, it is undergoing simple harmonic motion.

The period of the motion is $\frac{2\pi}{n} = \frac{2\pi}{9}$

iii)

$$x = a\cos(9t + \theta)$$

When
$$t = 0$$
, $x = 0$

$$0 = a \cos \theta$$

$$\theta = \frac{\pi}{2}$$

$$\therefore x = a \cos\left(9t + \frac{\pi}{2}\right)$$

$$\dot{x} = -9a\sin\left(9t + \frac{\pi}{2}\right)$$

When
$$t = 0, v = -15$$

$$-15 = -9a\sin\left(\frac{\pi}{2}\right)$$

$$a = \frac{5}{3}$$
 m

$$x = \frac{5}{3}\cos\left(9t + \frac{\pi}{2}\right)$$

$$x = \frac{5}{3}\cos\left(54 + \frac{\pi}{2}\right)$$

$$x = 0.93 \text{ m} (2 \text{ d.p.})$$

The particle is about 0.93 m to the right of origin.

b) i)

$$x = t - 5, y = t^2 - 25$$

$$\frac{dx}{dt} = 1, \qquad \frac{dy}{dt} = 2t$$

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = 2t$$

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = 2t$$

$$t = -6$$

$$\frac{dy}{dx} = 2 \times -6 = -12$$

$$x = -11, \quad y = 11$$

$$y - 11 = -12(x + 11)$$

$$12x + y + 121 = 0$$

$$t = x + 5$$

$$y = (x + 5)^2 - 25$$

$$y = x^2 + 10x + 25 - 25$$

$$y = x^2 + 10x$$

Let
$$f(x) = \tan x + \log_e x - 1$$

$$f'(x) = \sec^2 x + \frac{1}{x}$$

Let
$$x_1 = 3$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

$$x_2 = 3 - \frac{f(3)}{f'(3)}$$

$$x_2 = 3 - \frac{f(3)}{f'(3)}$$

$$x_2 = 3 - \frac{\tan 3 + \log_e 3 - 1}{\sec^2 3 + \frac{1}{3}}$$

$$x_2 = 3.032$$
 (4 sig figs)

$$P(x) = 4x^3 - bx^2 - 64x - 16$$

$$P(x) = 4\left(x^3 - \frac{b}{4}x^2 - 16x - 4\right)$$

Let the roots be α , $\frac{1}{\alpha}$ and β

$$\alpha \times \frac{1}{\alpha} \times \beta = 4$$

$$\beta = 4$$

$$\alpha = -4, \quad \frac{1}{\alpha} = -\frac{1}{4}$$

$$\alpha + \beta + \frac{1}{\alpha} = \frac{b}{4}$$

$$b = -1$$

$$\alpha + \beta + \frac{1}{\alpha} = \frac{b}{4}$$

$$b = -1$$

$$P(x) = 4(x-4)(x+4)\left(x+\frac{1}{4}\right)$$

$$P(x) = (x-4)(x+4)(4x+1)$$

e)
d)
$$(4a + 9)^{17}$$

$$T_{k+1} = {17 \choose k} (4a)^{17-k} (9)^k$$

$$T_{k+1} = {17 \choose k} 4^{17-k} \cdot 9^k \cdot a^{17-k}$$

$$T_k = {17 \choose k-1} (4a)^{17-(k-1)} (9)^{k-1}$$

$$T_k = {17 \choose k-1} 4^{18-k} \cdot 7^{k-1} \cdot a^{18-k}$$

Compare coefficients

Compare coefficients
$$\frac{t_{k+1}}{t_k} = \frac{\binom{17}{k} 4^{17-k} \cdot 9^k}{\binom{17}{k-1} 4^{18-k} \cdot 9^{k-1}}$$

$$\frac{t_{k+1}}{t_k} = \frac{\binom{17}{k} \cdot 9}{\binom{17}{k-1} \cdot 4}$$

$$\frac{t_{k+1}}{t_k} = \frac{9}{4} \times \frac{\frac{17!}{(17-k)! \, k!}}{\frac{17!}{(17-(k-1))! \, (k-1)!}}$$

$$\frac{t_{k+1}}{t_k} = \frac{9}{4} \times \frac{(18-k)! \, (k-1)!}{(17-k)! \, k!}$$

$$\frac{t_{k+1}}{t_k} = \frac{9}{4} \times \frac{18-k}{k}$$

$$\frac{t_{k+1}}{t_k} = \frac{162-9k}{4k}$$

For the greatest coefficient,

$$\begin{aligned} \frac{t_{k+1}}{t_k} &> 1\\ \frac{162 - 9k}{4k} &> 1\\ 162 - 9k &> 4k\\ -13k &> -162\\ k &< 12\frac{6}{13} \end{aligned}$$

So the term with the greatest coefficient occurs when k = 12.

$$T_{13} = {17 \choose 12} 4^{17-12} \cdot 9^{12} \cdot a^{17-12}$$
$$= {17 \choose 12} 4^5 \cdot 9^{12} \cdot a^5$$

So the greatest coefficient is $\binom{17}{12}4^5 \cdot 9^{12}$

Q3.
a) i)
$$V = \pi \int_0^h x^2 dy$$

$$V = \pi \int_0^h 4y dy$$

$$V = \pi [2y^2]_0^h$$

$$V = 2\pi h^2$$

ii)
$$\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$$
$$\frac{dV}{dt} = 4\pi h \times \frac{dh}{dt}$$
$$\frac{dV}{dt} = 6, h = 5$$
$$6 = 4\pi \times 5 \times \frac{dh}{dt}$$
$$\frac{dh}{dt} = \frac{3}{10\pi} \text{ m/min}$$

iii)
$$\frac{dh}{dt} = \frac{3}{2\pi h}$$

$$t = \int_0^{12} \frac{2\pi h}{3} dh$$

$$t = \left[\frac{\pi h^2}{3}\right]_0^{12}$$

$$t = \frac{144\pi}{3} \min \approx 150.80 \min$$

4(1³ + 2³ + 3³ + ··· + n³) =
$$n^2(n + 1)^2$$

Step 1: for $n = 1$
LHS = $4 \times 1^3 = 4$
RHS = $1^2 \times (1 + 1)^2 = 4$
LHS = RHS
 \therefore Statement is true for $n = 1$
Step 2: Assume statement is true for $n = k$
 $4(1^3 + 2^3 + 3^3 + ··· + k^3) = k^2(k + 1)^2$

Step 3: Prove statement is true for n = k + 1i.e. $4(1^3 + 2^3 + 3^3 + \dots + k^3 + (k+1)^3)$ $=(k+1)^2(k+2)^2$

$$LHS = 4(1^{3} + 2^{3} + 3^{3} + \dots + k^{3} + (k+1)^{3})$$

$$LHS = 4(1^{3} + 2^{3} + 3^{3} + \dots + k^{3}) + 4(k+1)^{3}$$

$$LHS = k^{2}(k+1)^{2} + 4(k+1)^{3} \text{ (from step 2)}$$

$$LHS = (k+1)^{2}(k^{2} + 4(k+1))$$

$$LHS = (k+1)^{2}(k^{2} + 4(k+1))$$

$$LHS = (k+1)^{2}(k^{2} + 4k + 4)$$

 $LHS = (k+1)^2(k+2)^2 = RHS$

 \therefore Statement is true for all positive integers n by mathematical induction.

ii)
$$\lim_{n \to \infty} \left(\frac{1^3 + 2^3 + 3^3 + \dots + n^3}{n^2} \right)$$

$$= \lim_{n \to \infty} \left(\frac{n^2 (n+1)^2}{4n^4} \right)$$

$$= \lim_{n \to \infty} \left(\frac{1 + \frac{2}{n} + \frac{1}{n^2}}{4} \right)$$

$$= \frac{1}{4}$$

Join AC

 $\angle CBA = \frac{1}{2} \angle AOC = 45^{\circ}$ (angle at the centre is twice the angle at the circumference)

 $\angle CAB = \frac{1}{2} \angle AOC = 45^{\circ}$ (angle at the centre is twice the angle at the circumference)

$$\therefore \angle CBA = \angle CAB = 45^{\circ}$$

ii)

Join DB

 $\angle DBA = \angle DCA$ (angles at the circumference standing on the same arc AD)

Let $\angle DBA = \angle DCA = \alpha$

 $\angle DBC = \angle DBA + \angle ABC = \alpha + 45^{\circ}$ (adjacent angles)

 $\angle BXC = \angle BAC + \angle DCA = \alpha + 45^{\circ}$ (exterior angle of $\triangle AXC$ equals to sum of the opposite interior angles)

$$\therefore \angle DBC = \angle BXC$$

iii)

Join DE

 $\angle DBC = \angle DEC = \alpha + 45^{\circ}$ (angles at the circumference standing on the same arc CD)

$$\therefore \angle DEC = \angle BXC = \alpha + 45^{\circ}$$

∴ XYED is a cyclic quadrilateral as the exterior angle equals to opposite interior angle)

d)
$$T = P + Ae^{kt}$$

Let 1am be time zero $P = 22$ °C, $t = 0$, $T = 33.5$ °C $33.5 = 22 + Ae^0$
 $A = 11.5$

2 hours after 1am,
$$t = 120$$
, $T = 28^{\circ}$ C
 $28 = 22 + 11.5e^{120k}$
 $\frac{6}{11.5} = e^{120k}$
 $k = \frac{\ln\left(\frac{6}{11.5}\right)}{120}$

Body temperature was originally 37°C $37 = 22 + 11.5e^{kt}$ $15 = 11.5e^{kt}$ $kt = \ln\left(\frac{15}{11.5}\right)$ $t = \frac{\ln\left(\frac{15}{11.5}\right)}{k}$ $t = -49.00859092 \dots$

 $t \approx -49$

 \therefore The victim passed away 49 min before 1am, so the time would be 12: 11am in the morning.

Q4.
a) i)
$$\frac{d}{dx} \left(\frac{1}{2}v^2\right) = \frac{1}{2} \times 2 \times v \times \frac{dv}{dx}$$

$$\frac{d}{dx} \left(\frac{1}{2}v^2\right) = v \frac{dv}{dx}$$

$$\frac{d}{dx} \left(\frac{1}{2}v^2\right) = \frac{dx}{dt} \times \frac{dv}{dx}$$

$$\frac{d}{dx} \left(\frac{1}{2}v^2\right) = \frac{dv}{dt}$$

$$\therefore \frac{d}{dx} \left(\frac{1}{2}v^2\right) = \frac{d^2x}{dt^2}$$

ii)

$$\ddot{x} = x^{2}(4 - x^{-3})$$

$$\frac{d}{dx}(\frac{1}{2}v^{2}) = x^{2}(4 - x^{-3})$$

$$\frac{1}{2}v^{2} = \int (4x^{2} - \frac{1}{x})dx$$

$$\frac{1}{2}v^{2} = \frac{4x^{3}}{3} - \ln x + C$$

$$v^{2} = \frac{8x^{3}}{3} - 2\ln x + C$$
When $x = 1, v = 3$

$$9 = \frac{8}{3} + C$$

$$C = 6\frac{1}{3}$$

$$v^{2} = \frac{8x^{3}}{3} - 2\ln x + 6\frac{1}{3}$$

$$x = 5$$

$$v^{2} = \frac{8}{3} \times 5^{3} - 2\ln 5 + 6\frac{1}{3}$$

$$v = \pm 18.34 \text{ m/s (2 d.p.)}$$

The speed is 18.34 m/s when the particle is 5

metres to the right of the origin.

 $m = Vt \cos \alpha$ $m = V t \cos \alpha$ $t = \frac{m}{V \cos \alpha}$ $h = V \times \frac{m}{V \cos \alpha} \times \sin \alpha - \frac{1}{2} \times 10 \times \left(\frac{m}{V \cos \alpha}\right)^{2}$ $h = m \tan \alpha - \frac{5m^{2}}{V^{2} \cos^{2} \alpha}$ $h = m \tan \alpha - \frac{5m^{2}(\tan^{2} \alpha + 1)}{V^{2}}$ $5m^{2}(\tan^{2}\alpha + 1) = V^{2}(m\tan\alpha - h)$ $V^{2} = \frac{5m^{2}(\tan^{2}\alpha + 1)}{m\tan\alpha - h}$ $V^{2} = \frac{5n^{2}(\tan^{2}\alpha + 1)}{n\tan\alpha - h}$ $\frac{5m^{2}(\tan^{2}\alpha + 1)}{m\tan\alpha - h} = \frac{5n^{2}(\tan^{2}\alpha + 1)}{n\tan\alpha - h}$ $\frac{m^{2}}{m\tan\alpha - h} = \frac{n^{2}}{n\tan\alpha - h}$ $\frac{m^{2}(n\tan\alpha - h)}{m^{2}(n\tan\alpha - h)} = \frac{n^{2}(m\tan\alpha - h)}{n\tan\alpha - h}$ $m^2(n \tan \alpha - h) = n^2(m \tan \alpha - h)$ $m^2 n \tan \alpha - m^2 h = n^2 m \tan \alpha - n^2 h$ $m^2 n \tan \alpha - n^2 m \tan \alpha = m^2 h - n^2 h$ $(m^2n - n^2m)\tan\alpha = m^2h - n^2h$ $\tan \alpha = \frac{m^2 h - n^2 h}{m^2 n - n^2 m}$ $\tan \alpha = \frac{m^2 h - n^2 h}{m^2 n - n^2 m}$ $\tan \alpha = \frac{(m^2 - n^2)h}{mn(n - m)}$ $\tan \alpha = \frac{(m + n)(m - n)h}{mn(n - m)}$ $\tan \alpha = \frac{h(m + n)}{mn}$

Vertically

 $\ddot{y} = -g$

 $\dot{y} = V \sin \alpha - gt$ $y = Vt \sin \alpha - \frac{1}{2}gt^2$

b) i)

 $\ddot{x} = 0$

ii)

Horizontal

 $\dot{x} = V \cos \alpha$

 $x = Vt \cos \alpha$

at x = m, y = h, g = 10

c) i)
$$(1+x)^{2n} = \sum_{k=0}^{2n} {2n \choose k} x^k$$
Let $x = 1$

$$2^{2n} = \sum_{k=0}^{2n} {2n \choose k} 1^k$$

$$4^n = \sum_{k=0}^{2n} {2n \choose k}$$

ii) Integrate both sides

$$\frac{(1+x)^{2n+1}}{2n+1} = \sum_{k=0}^{2n} {2n \choose k} \frac{x^{k+1}}{k+1} + C$$

Let x = 0

$$\frac{1}{2n+1} = C$$

$$\frac{(1+x)^{2n+1}}{2n+1} = \sum_{k=0}^{2n} {2n \choose k} \frac{x^{k+1}}{k+1} + \frac{1}{2n+1}$$
$$\sum_{k=0}^{2n} {2n \choose k} \frac{x^{k+1}}{k+1} = \frac{(1+x)^{2n+1}}{2n+1} - \frac{1}{2n+1}$$

Let x = 1

$$\sum_{k=0}^{2n} {2n \choose k} \frac{1}{k+1} = \frac{2^{2n+1}}{2n+1} - \frac{1}{2n+1}$$

$$\sum_{k=0}^{2n} {2n \choose k} \frac{1}{k+1} = \frac{2^{2n+1}-1}{2n+1}$$

$$\sum_{k=0}^{2n} {2n \choose k} \frac{1}{k+1} = \frac{2 \times 2^{2n}-1}{2n+1} \times \frac{2}{2}$$

$$\sum_{k=0}^{2n} {2n \choose k} \frac{1}{k+1} = \frac{4 \times 4^n - 2}{4n+2}$$

$$\sum_{k=0}^{2n} {2n \choose k} \frac{1}{k+1} = \frac{4^{n+1}-2}{4n+2}$$