## PENRITH HIGH SCHOOL



## MATHEMATICS EXTENSION 2 <br> 2012

HSC Trial

## Assessor: Mr Ferguson

## General Instructions:

- Reading time - 5 minutes
- Working time $\mathbf{-} \mathbf{3}$ hours
- Write using black or blue pen. Black pen is preferred
- Board-approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- A multiple choice answer sheet is provided at the back of this paper.
- Show all necessary working in Questions 11 - 16.
- Work on this question paper will not be marked.
Section1

| Question | Mark |
| :---: | :---: |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
|  |  |


| Question | Mark |
| :---: | :---: |
| 6 |  |
| 7 |  |
| 8 |  |
| 9 |  |
| 10 |  |
| Total | $/ 10$ |

Section 2

| Question | Mark |
| :---: | ---: |
| 11 | $/ 15$ |
| 12 | $/ 15$ |
| 13 | $/ 15$ |
| 14 | $/ 15$ |
| 15 | $/ 15$ |
| 16 | $/ 15$ |


| Total | $/ 100$ |
| :---: | :---: |
| $\%$ |  |

This paper MUST NOT be removed from the examination room
Student Number: $\qquad$

## SECTION 1: Circle the correct answer on the multiple choice answer sheet

1 The diagram shows the graph of the function $y=f(x)$.


Which of the following is the graph of $y=|f(x)|$ ?
(A)

(C)

(B)

(D)


2 Let $z=4+i$. What is the value of $\overline{i z}$ ?
(A) $-1-4 i$
(B) $-1+4 i$
(C) $1-4 i$
(D) $1+4 i$

3 Consider the Argand diagram below.


Which inequality could define the shaded area?
(A) $|z-i| \leq 2$ and $0 \leq \arg (z-1) \leq \frac{3 \pi}{4}$
(B) $|z+i| \leq 2$ and $0 \leq \arg (z-1) \leq \frac{3 \pi}{4}$
(C) $|z-i| \leq 2$ and $0 \leq \arg (z-1) \leq \frac{\pi}{4}$
(D) $|z+i| \leq 2$ and $0 \leq \arg (z-1) \leq \frac{\pi}{4}$

4 Consider the hyperbola with the equation $\frac{x^{2}}{9}-\frac{y^{2}}{5}=1$.
What are the coordinates of the vertex of the hyperbola?
(A) $( \pm 3,0)$
(B) $(0, \pm 3)$
(C) $(0, \pm 9)$
(D) $( \pm 9,0)$

5 The points $P\left(c p, \frac{c}{p}\right)$ and $\mathrm{Q}\left(c q, \frac{c}{q}\right)$ lie on the same branch of the hyperbola $x y=c^{2}(p \neq$ $q)$. The tangents at $P$ and $Q$ meet at the point $T$. What is the equation of the normal to the hyperbola at $P$ ?
(A) $p^{2} x-p y+c-c p^{4}=0$
(B) $p^{3} x-p y+c-c p^{4}=0$
(C) $x+p^{2} y-2 c=0$
(D) $x+p^{2} y-2 c p=0$

6 What is the value of $\int \sec x d x$ ? Use the substitution $t=\tan \frac{x}{2}$.
(A) $\ln |(t+1)(t-1)|+c$
(B) $\quad \ln \left|\frac{1+t}{1-t}\right|+c$
(C) $\quad \ln |(1+t)(1-t)|+c$
(D) $\ln \left|\frac{t+1}{t-1}\right|+c$

7 Let $I_{n}=\int_{0}^{x} \sin ^{n} t d t$, where $0 \leq x \leq \frac{\pi}{2}$.
Which of the following is the correct expression for $I_{n}$ ?
(A) $\quad I_{n}=\left(\frac{n-1}{n}\right) I_{n-2}$ with $n \geq 2$.
(B) $\quad I_{n}=\left(\frac{n+1}{n}\right) I_{n-2}$ with $n \geq 2$.
(C) $\quad I_{n}=n(n-1) I_{n-2}$ with $n \geq 2$.
(D) $\quad I_{n}=n(n+1) I_{n-2}$ with $n \geq 2$.

8 The region enclosed by $y=x^{3}, y=0$ and $x=2$ is rotated around the $y$-axis to produce a solid. What is the volume of this solid?
(A) $\frac{8 \pi}{5}$ units $^{3}$
(B) $\frac{32 \pi}{5}$ units $^{3}$
(C) $\frac{64 \pi}{5}$ units $^{3}$
(D) $\frac{16 \pi}{5}$ units $^{3}$

9 What is the angle at which a road must be banked so that a car may round a curve with a radius of 100 metres at $90 \mathrm{~km} / \mathrm{h}$ without sliding? Assume that the road is smooth and gravity to be $9.8 \mathrm{~ms}^{-2}$.
(A) $83^{\circ} 10^{\prime}$
(B) $32^{\circ} 32^{\prime}$
(C) $83^{\circ} 6^{\prime}$
(D) $32^{\circ} 53^{\prime}$

10 The polynomial equation $x^{3}+4 x^{2}-2 x-5=0$ has roots $\alpha, \beta$ and $\gamma$. Which of the following polynomial equations have roots $\alpha^{2}, \beta^{2}$ and $\gamma^{2}$ ?
(A) $x^{3}-20 x^{2}-44 x-25=0$
(B) $x^{3}-20 x^{2}+44 x-25=0$
(C) $x^{3}-4 x^{2}+5 x-1=0$
(D) $x^{3}+4 x^{2}+5 x-1=0$

## SECTION 2

Question 11 (15 marks) (Use a new page to write your answers)
(a) Find (i) $\int \frac{t^{2}-1}{t^{3}} d t$.
(ii) $\int \frac{d x}{\sqrt{6-x-x^{2}}}$
(b) Evaluate (i) $\int_{0}^{1} \frac{x}{(x+1)(2 x+1)} d x$
(ii) $\int_{0}^{\frac{\pi}{4}} x \tan ^{2} x d x$
(c)
(i) If $I_{n}=\int_{0}^{\frac{\pi}{2}} x^{n} \cos x d x$, show that for $n>1$,

$$
I_{n}=\left(\frac{\pi}{2}\right)^{n}-n(n-1) I_{n-2}
$$

(ii) Hence find the area of the finite region bounded by the curve
$y=x^{4} \cos x$ and the $x$ axis for $0 \leq x \leq \frac{\pi}{2}$.

Question 12 (15 marks) (Use a new page to write your answers)
(a) Given that $z=\sqrt{2}-\sqrt{2} i$ and $w=-\sqrt{2}$, find, in the form $x+i y$ :
(i) $w z^{2} \quad 1$
(ii) $\arg z \quad 1$
(iii) $\frac{z}{z+w}$
(iv) $|z|$
(v) $z^{10}$
(b) Find the values of real numbers $a$ and $b$ such that $(a+i b)^{2}=5-12 i$
(c) Draw Argand diagrams to represent the following regions
(i) $1 \leq|z+4-3 i| \leq 3$
(ii) $\frac{\pi}{6} \leq \arg z \leq \frac{\pi}{3}$
(d) (i) Show that $\frac{1+\cos \theta+i \sin \theta}{1-\cos \theta-i \sin \theta}=i \cot \frac{\theta}{2}$
(ii) Hence solve $\left(\frac{z-1}{z+1}\right)^{8}=-1$

Question 13 (15 marks) (Use a new page to write your answers)
(a) The diagram shows the graph of the function $f(x)=x^{2}+x-2$. On separate diagrams sketch the following graphs, showing clearly any intercepts on the coordinate axes and the equations of any asymptotes.

(i) $\quad y=|f(x)|$
(ii) $\quad y=[f(x)]^{2}$
(iii) $y=\frac{1}{f(x)}$
(iv) $y=\log _{e} f(x)$
(b) The horizontal base of a solid is the area enclosed by the curve $|x|^{\frac{1}{2}}+|y|^{\frac{1}{2}}=1$.

Vertcial cross sections taken perpendicular to the $x$-axis are equilateral triangles with one side in the base.

(i) Show that the volume of the solid is given by $V=2 \sqrt{3} \int_{0}^{1}(1-\sqrt{x})^{4} d x$
(ii) Use the substitution of $u=1-\sqrt{x}$ to evaluate this integral.
(c) The tangent $A E$ is parallel to the chord $D C$.
(i) Prove that $(A B)^{2}=B C \cdot B E$
(ii) Hence or otherwise prove that $\frac{A C}{A E}=\sqrt{\frac{B C}{B E}}$


Question 14 (15 marks) (Use a new page to write your answers)
(a) The equation of an ellipse is given by $4 x^{2}+9 y^{2}=36$.
(i) Find $S$ and $S^{\prime}$ the foci of the ellipse
(ii) Find the equations of the directrices $M$ and $M^{\prime}$
(iii) Sketch the ellipse showing foci, directrices and axial intercepts.
(iv) Let P be any point on the ellipse.

Show $S P+S^{\prime} P=6$
(v) Find the equation of the chord of contact from an external point $(3,2)$
(b) (i) Sketch the rectangular hyperbola $x y=c^{2}$, labelling the point $P\left(c t, \frac{c}{t}\right)$ on it.
(ii) Show that the equations of the tangent and normal to the hyperbola at P are $x+t^{2} y=2 c t$ and $t y+c t^{4}=t^{3} x+c$ respectively.
(iii) If the tangent at P meets the coordinate axes at $X$ and $Y$ respectively 3 and the normal at P meets the lines $y=x$ and $y=-x$ at $R$ and $S$ respectively, prove that the quadrilateral $R Y S X$ is a rhombus.

Question 15 (15 marks) (Use a new page to write your answers)
(a) When a certain polynomial is divided by $x+1, x-3$ the respective remainders are 6 and -2 . Find the remainder when this polynomial is divided by $x^{2}-2 x-3$.
(b) The cubic equation $x^{3}+p x+q=0$ has 3 non-zero roots $\alpha, \beta, \gamma$.

Find, in terms of the constants $p, q$ the values of
(i) $\alpha^{2}+\beta^{2}+\gamma^{2}$
(ii) $\alpha^{3}+\beta^{3}+\gamma^{3}$.
(c) If $\alpha, \beta, \gamma$ are the roots of the equation $3 x^{3}-5 x^{2}-4 x+3=0$, find the cubic equation with roots $\alpha-1, \beta-1, \gamma-1$.
(d) A polynomial of degree $n$ is given by $P(x)=x^{n}+a x-b$. It is given that the polynomial has a double root at $x=\alpha$.
(i) Find the derived polynomial $P^{\prime}(x)$ and show that $\alpha^{n-1}=-\frac{a}{n}$.
(ii) Show that $\left(\frac{a}{n}\right)^{n}+\left(\frac{b}{n-1}\right)^{n-1}=0$.
(iii) Hence deduce that the double root is $\frac{b n}{a(n-1)}$. 1

Question 16 (15 marks) (Use a new page to write your answers)
(a) For $a>0, b>0, c>0$ and $d>0$ and given that $\frac{a+b}{2} \geq \sqrt{a b}$, show that $\frac{a+b+c+d}{4} \geq \sqrt[4]{a b c d}$
(b) (i) Use De Moivre's theorem to express $\tan 5 \theta$ in terms of powers of $\tan \theta$.
(ii) Hence show that $x^{4}-10 x^{2}+5=0$ has roots $\pm \tan \frac{\pi}{5}$ and $\pm \tan \frac{2 \pi}{5}$.
(iii) Deduce that $\tan \frac{\pi}{5} \cdot \tan \frac{2 \pi}{5} \cdot \tan \frac{3 \pi}{5} \cdot \tan \frac{4 \pi}{5}=5$
(c) A mass 10 kg , centre $B$ is connected by light rods to sleeves $A$ and $C$ which revolve freely about the vertical axis $A C$ but do not move vertically.

(i) Given $A C=2$ metres, show that the radius of the circular path of rotation of $B$ is $\frac{\sqrt{3}}{2}$ metres.
(ii) Find the tensions in the rods $A B, B C$ when the mass makes 90 revolutions per minute about the vertical axis.
(d) Given that $a_{n}=\sqrt{2+a_{n-1}}$ for integers $n \geq 1$ and $a_{0}=1$, by mathematical induction prove that for $n \geq 1$ :

$$
\sqrt{2}<a_{n}<2
$$

## STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0, \quad \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

$$
\text { Note: } \ln x=\log _{e} x, \quad x>0
$$

## Multiple Choice Answer Sheet

| 1. | A | B | C | D |
| :--- | :--- | :--- | :--- | :--- |
| 2. | A | B | C | D |
| 3. | A | B | C | D |
| 4. | A | B | C | D |
| 5. | A | B | C | D |
| 6. | A | B | C | D |
| 7. | A | B | C | D |
| 8. | A | B | C | D |
| 9. | $A$ | B | C | D |
| 10. | A | B | C | D |

Section 1
i) $B$
2)

$$
\begin{aligned}
i z & =i(4+i) \\
& =4 i+i^{2} \\
& =4 i-1 \\
& =-1+4 i \\
\overline{12} & =-1-4 i \\
& =A
\end{aligned}
$$

3) $A$.
4) Let $y=0$

$$
\begin{gathered}
\frac{x^{2}}{9}=1 \\
x^{2}=9 \\
x= \pm 3 . \\
( \pm 3,0) \\
A
\end{gathered}
$$

5) Normal and $p\left(c p, \frac{c}{p}\right)$

$$
\begin{aligned}
\therefore & y-\frac{c}{p}=p^{2}(x-c p) \\
& p y-c=p^{3}(x-c p) \\
& p y-c=p^{3} x-p^{4} c \\
& p^{3} x-p y+c-c p^{4}=0
\end{aligned}
$$

$$
\begin{aligned}
& x=c t \quad \frac{d x}{d t}=c \\
& y=\frac{c}{t} \quad \frac{d y}{d t}=-\frac{c}{t^{2}} \\
& \therefore \frac{d y}{d x}=-\frac{1}{t^{2}}
\end{aligned}
$$

$\therefore$ gradient of normal is $t^{2}$ in this case is $p^{2}$
$B$
6)

$$
\begin{aligned}
& t=\tan \frac{x}{2} \\
& \frac{d t}{d x}=\frac{1}{2} \sec ^{2} \frac{x}{2} \\
& =\frac{1}{2}\left(1+t^{2}\right) \\
& d x=\frac{2 d t}{1+t^{2}} \\
& \int \sec x=\int \frac{1+t^{2}}{1-t^{2}} \cdot \frac{2}{1+x^{2}} d t \\
& =\int \frac{2}{1-t^{2}} d t \\
& =\int \frac{A}{1-t}+\frac{B}{1+t} d t \\
& A(1+t)+B(1-t)=2 \\
& \text { Let } t=-1 \quad \therefore B=1 \\
& \therefore \int \frac{1}{1-t}+\int \frac{1}{1+t}=-\ln (1-t)+\ln (1+t) \quad t=1 \quad \therefore A=1 .
\end{aligned}
$$

7) $I_{n}=\int_{0}^{x} \sin ^{n} x d x \quad 0 \leqslant x \leqslant \frac{\pi}{2}$

$$
\begin{aligned}
& \int_{0}^{0} \sin ^{n-1} x \sin x \quad u=\sin ^{n-1} x \quad u^{\prime}=(n-1) \sin ^{n-2} x \cos x \\
& v^{\prime}=\sin x \quad v=-\cos x
\end{aligned} I_{n}=\left[-\cos x \sin ^{n-1} x\right]+n-1 \int \cos ^{2} x \sin ^{n-2} x .
$$

8) 



$$
\begin{aligned}
& \quad \int_{0}^{2} \pi x y d x \\
& =\int_{0}^{2} \pi x x^{3} d x \\
& =\int_{0}^{2} \pi x^{4} d x \\
& \pi\left[\frac{x^{5}}{5}\right]_{0}^{2} \\
& =\frac{32 \pi}{5}
\end{aligned}
$$

9) 

$$
\begin{aligned}
\tan \theta & =\frac{v^{2}}{r g} \\
& =\frac{25^{2}}{100 \times 9.8} \\
& =0.6377 \\
Q & =32^{\circ} 32
\end{aligned}
$$

10) 

A $\alpha \beta \gamma$ satisfy $x^{3}+4 x^{2}-2 x-5=0$
$\alpha^{2} \beta^{2} \gamma^{2}$ satisf $\left(x^{\frac{1}{2}}\right)^{3}+4\left(x^{\frac{1}{2}}\right)^{2}-2\left(x^{\frac{1}{2}}\right)-5=0$

$$
x^{\frac{3}{2}}+4 x-2 x^{\frac{1}{2}}-5=0
$$

$x^{\frac{3}{2}}-2 x^{\frac{1}{2}}=-4 x+5$
$x^{\frac{1}{2}}(x-2)=-4 x+5$
$x(x-2)^{2}=(-4 x+5)^{2}$
$x\left(x^{2}-4 x+4\right)=16 x^{2}-40 x+25$

$$
x^{3}-4 x^{2}+4 x=16 x^{2}-40 x+25
$$

$$
x^{3}-20 x^{2}+44 x-25=0
$$

Section 2. Question 11

$$
\text { a) (i) } \begin{aligned}
& \int \frac{t^{2}-1}{t^{3}} d t \\
& \int \frac{t^{2}}{t^{3}}-\int \frac{1}{t^{3}} \\
& \int \frac{1}{t}-\int t^{-3} \\
& \ln t-\frac{t^{-2}}{-2} \\
& \ln t+\frac{1}{2 t^{2}}+c
\end{aligned}
$$

(ii) $\int \frac{d x}{\sqrt{6-x-x^{2}}}$

$$
\begin{aligned}
& \int \frac{d x}{\sqrt{-\left(x^{2}+x-6\right)}} \\
& \int \frac{d x}{\sqrt{-\left(\left(x+\frac{1}{2}\right)^{2}-\frac{25}{4}\right]}} \\
&= \int \sqrt{\frac{25}{4}-\left(x+\frac{1}{2}\right)^{2}} \\
&= \sin ^{-1} \frac{x+\frac{1}{2}}{\frac{5}{2}} \\
&= \sin ^{-1}\left(\frac{2 x+1}{5}\right)+C .
\end{aligned}
$$

b)

$$
i \int_{0}^{1} \frac{x}{(x+1)(2 x+1)}
$$

$$
\frac{A}{x+1}+\frac{B}{2 x+1}=x
$$

$$
A(2 x+1)+B(x+1)=x
$$

Let $x=-1 \quad-A=-1$

$$
A=1
$$

$$
x=-\frac{1}{2} \quad \frac{1}{2} b=-\frac{1}{2}
$$

$$
\begin{aligned}
& \int_{0}^{1} \frac{1}{x+1}+\int_{0}^{1} \frac{-1}{2 x+1} \\
&=\int_{0}^{1} \frac{1}{x+1}-\frac{1}{2} \int_{0}^{1} \frac{2}{2 x+1}\left[\ln (x+1)-\frac{1}{2} \ln (2 x+1)\right]_{0}^{1} \\
&=\left.\ln \left(\frac{2}{3}\right) \quad \ln 2-\frac{1}{2} \ln 3\right)-\left(\ln \frac{2 \sqrt{3}}{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ii) } \int_{0}^{\frac{4}{4}} x \tan ^{2} x d x \\
& \int_{0}^{4} x\left(\sec ^{2} x-1\right) d x \quad \frac{d v}{d x}=\sec ^{2} x-1 \quad v=\tan x-x \\
& \therefore I=[x(\tan x-x)]_{0}^{\frac{\pi}{4}}-\int_{0}^{\frac{\pi}{\rho^{4}}}(\tan x-x) d x \\
& =[x(\tan x-x)]_{0}^{\frac{\pi}{4}}-\int_{0}^{0} \frac{\sin x}{\cos x}-x d x \\
& =\left[x(\tan x-x)+\ln (\cos x)+\frac{x^{2}}{2}\right]_{0}^{\frac{\pi}{4}} \\
& =\left[x \tan x-\frac{x^{2}}{2}+\ln (\cos x)\right]_{0}^{\frac{\pi}{4}} \\
& \text { C } I=\int_{n}^{\frac{\pi}{2} u \frac{d i}{n} x^{n} \cos x d x} \frac{\pi}{4}-\frac{\pi^{2}}{32}+\ln \frac{1}{\sqrt{2}} \text {. } \\
& C I=\int_{n}^{2} x^{n} \cos x d x \quad u=x^{n} \quad \frac{d u}{d n}-n x^{n-1} \\
& {\left[x^{n} \sin x\right]_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}} \sin x n x^{n-1} d x . \frac{d x}{d x}=\cos x \quad v \sin x} \\
& \left(\frac{\pi}{2}\right)^{n}+n \int^{\int^{0}} x^{\mu-1} \sin x \\
& \left(\frac{\pi}{2}\right)^{n}+n\left[\begin{array}{c}
x \cdot \cos x \\
=0 \\
=0
\end{array}\right]_{0}^{\frac{\pi}{2}}-n \int_{0}^{\frac{\pi}{2}} \cos x(n-1) x^{n-2} d x \\
& =\left(\frac{\pi}{2}\right)^{n}+0-n(n-1) I_{n-2} \text {. } \\
& I_{n}=\left(\frac{\pi}{2}\right)^{n}-n(n-1) I_{n-2} . \\
& \text { (i) } \\
& \begin{array}{l}
A=I_{4} \\
\quad=\left(\frac{\pi}{2}\right)^{4}-4 \times 3\left[\left(\frac{\pi}{2}\right)^{2}-2 \int_{0}^{\frac{\pi}{2}} \cos x d x\right]
\end{array} \\
& =\left(\frac{\pi}{2}\right)^{4}-3 \pi^{2}+24[\sin x]_{0}^{\frac{\pi}{2}} \\
& =\left(\frac{\pi}{2}\right)^{4}-3 \pi^{2}+24
\end{aligned}
$$

Question 12
a(i)

$$
\text { (i) } \begin{aligned}
& -\sqrt{2}(\sqrt{2}-\sqrt{2} i)^{2} \\
= & -\sqrt{2}\left(2-4 i+4 i^{2}\right) \\
= & -\sqrt{2}(0-4 i) \\
= & 4 \sqrt{2} i
\end{aligned}
$$

(ii)


$$
=-\frac{\pi}{4}
$$

(ii)

$$
\text { (1) } \begin{aligned}
& \frac{z}{z+w} \\
& \frac{\sqrt{2}-\sqrt{2} i}{\sqrt{2}-\sqrt{2} i+-\sqrt{2}} \\
= & \frac{\sqrt{2}-\sqrt{2} i}{-\sqrt{2} i} \times \frac{\sqrt{2} i}{\sqrt{2} i} \\
= & \frac{2 i-2 i^{2}}{-2 i^{2}} \\
= & \frac{2 i+2}{2} \\
= & 1+i
\end{aligned}
$$

$$
\begin{aligned}
(i v) & |z| \\
= & \sqrt{\sqrt{2}^{2}+\sqrt{2}^{2}} \\
= & \sqrt{4} \\
= & 2 \\
(v) & z^{10}=2\left(c i s-\frac{\pi}{4}\right)^{10} \\
& =2^{10} c i s-\frac{10 \pi}{4}=1024 c i s-\frac{2 \pi}{4}=c i s-\frac{\pi}{2}=-i 1024
\end{aligned}
$$

b)

$$
\begin{align*}
& (a+i b)^{2}=5-12 c \\
& a^{2}+2 a b i-b^{2}=5-12 \\
& a^{2}-b^{2}=5 \quad-0 \\
& a 2 a b=-12-1  \tag{2}\\
& a b=-6 \\
& b=-\frac{6}{4} \\
& -\frac{36}{a^{2}}=5 \\
& a^{4}-5 a^{2}-36=0 \\
& \left(a^{2}-9\right)\left(a^{2}+4\right)=0 \\
& a^{2}-9 \\
& 2( \pm 3) b=-12 \\
& \therefore a= \pm 3 \quad \text { a } \quad \text { a } a=-3 b=+2
\end{align*}
$$

c) (1)

$$
\begin{aligned}
\left(\frac{z-1}{}\right)^{8} & =-1 \Rightarrow \frac{z-1}{2+1}=\sqrt[8]{-1} \\
\frac{z-1}{z+1} & =\sqrt[8]{\operatorname{cis}(\pi+2 k \pi)}=\operatorname{cis} \frac{(2 k+1) \pi}{8} k=0, \pm 1,22 \\
z-1 & =\left(\operatorname{cis} \frac{(2 k+1) \pi}{8}\right)(z+1) \\
z-1 & =\operatorname{cis}\left(\frac{2 k+1) \pi}{8}\right) z+\operatorname{cis} \frac{(2 k+1) \pi}{8} \\
z & \left(1-\operatorname{cis} \frac{(2 k+1) \pi}{8}\right)=\operatorname{cis} \frac{(2 k+1) \pi}{8}+1 \\
\therefore z & =\frac{1+\operatorname{cis} \frac{(2 k+1) \pi}{8}}{1-\operatorname{cis} \frac{(2 k+1) \pi}{8}} \\
& =i \cot \frac{(2 k+1) \pi}{18} \\
& =i \cot \frac{+\pi}{16}, i \cot +\frac{3 \pi}{16}
\end{aligned}
$$

$$
= \pm i \cot \frac{\pi}{16}, \pm i \cot \frac{3 \pi}{16} \text { since cot } x \text { is an odd functor }
$$

$d(i)$
Alternatively Let $t=\tan \frac{Q}{2}$.

$$
\text { L.H.S } \begin{aligned}
& \frac{1+\frac{1-t^{2}}{1+t^{2}}+\frac{i 2 t}{1+t^{2}}}{1-\frac{1-t^{2}}{1+t^{2}}-\frac{i 2 t}{1+t^{2}}} \\
= & \frac{2+i 2 t}{2 t^{2}-i 2 t} \\
= & \frac{1+i t}{t^{2}-i t} \\
= & \frac{i(t-i)}{t(t-i)} \\
= & \frac{i}{t}=i \cot \frac{\theta}{2}=\text { R.H.S }
\end{aligned}
$$

Question is
i) $y=|f(x)|$

i沙)


(iv) $y=\log f(x)$

As $x \rightarrow-2$ or $1 \quad f(x) \rightarrow 0 \quad \log f(x) \rightarrow+\infty$
 crosses $x$ axis when $\ln f(x)=0$ le when

$$
\begin{aligned}
& \text { When } f(x)=1 \\
& x^{2}+x-2=1 \\
& x^{2}+x-3=0 \\
& x=\frac{-1 \pm \sqrt{13}}{2}
\end{aligned}
$$

(b) (i)


$$
A=\sqrt{3} y^{2}
$$

$$
S V=\sqrt{3} y^{2} d x
$$

$$
V=\sum_{5 x \rightarrow 0}^{\infty} \sqrt{3 y^{2}} \sqrt{6} x
$$

$$
y^{\frac{1}{5}}=1-x^{\frac{1}{2}}
$$

$$
=\int_{0}^{1} \sqrt{3} y^{2} d x
$$

$$
y=\left(1-x^{2}\right)^{2}
$$

$$
=\int_{0}^{i} \sqrt{3} y_{i}^{2} d x
$$

$=\sqrt{3} \int_{0}^{1}(1-\sqrt{x})^{4} d x$
double since both sices

$$
=2 \sqrt{3} \int_{0}^{n}(1-\sqrt{x})^{4} d x
$$ of 9 aris

(i)

$$
\begin{aligned}
& =2 \sqrt{3} \int_{1}^{0} u^{4} x-2(1-u) d u \\
& =4 \sqrt{3} \int_{0}^{1} u^{4}-u^{5} d u \\
& =4 \sqrt{3}\left[6^{1} u^{5}-\frac{1}{6} u^{6}\right]_{0}^{1} \\
& =4 \sqrt{3}\left[\frac{1}{5}-\frac{1}{6}\right] \\
& =\frac{4 \sqrt{3}}{2}=\frac{\sqrt{3}}{1.2}
\end{aligned}
$$

$$
\begin{aligned}
& u=1-\sqrt{x} \quad x=(1-4)^{2} \\
& x=0 \quad\{=1 \\
& a^{2} x=-2(1-v) d i \quad x=1 \quad x=0
\end{aligned}
$$

C. i) Aim prove $(A B)^{2}=B C \cdot B E$
prod: In $\triangle A B C$ and $\triangle E B A$.
$\angle A E B=\angle C D E$ (alternate $\angle$ 'on parallel lines)
$\angle C D E=\angle C A B$ (angles in the same segment)

$$
\therefore \angle A E B=\angle C A B-A \text {. }
$$

$\angle B A E=\angle B C A$ (angle in the alternate segment)
$\therefore \triangle A B C$ III $\triangle E B A$ equiangular.

$$
\therefore \frac{A B}{B C}=\frac{B E}{A B} \text { or } \cdot A B^{2}=B C \cdot B E
$$

(ii) $\quad \frac{A C}{A E}=\frac{B C}{B A}$ since similar trianjes have sides in proportion.

$$
\begin{aligned}
A B^{2} & =B C \cdot B E \\
\therefore A B & =\sqrt{B C \cdot B E} \\
\frac{A C}{A E} & =\frac{B C}{\sqrt{B C \cdot B E}} \\
& =\frac{B C}{\sqrt{B C} \sqrt{B E}} \\
\frac{A C}{A E} & =\frac{\sqrt{B C}}{\sqrt{B E}}
\end{aligned}
$$

Questiont4
(a) $4 x^{2}+9 y^{2}=36$.
(i)

$$
\begin{aligned}
& \frac{x^{2}}{9}+\frac{y^{2}}{4}=1 \\
& a^{2}=9 \quad b^{2}=4 \quad b^{2}=a^{2}\left(1-e^{2}\right) \\
& 4=9\left(1-e^{2}\right) \\
& \frac{4}{9}=1-e^{2} \\
& e^{2}=\frac{5}{9} \\
& e=\frac{\sqrt{5}}{3} \\
& S(a e, 0) \quad S^{\prime}(-a e, 0) \\
& S(\sqrt{5}, 0) \quad S^{\prime}(-\sqrt{5}, 0)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
x & = \pm \frac{a}{e} \\
& = \pm \frac{3}{\frac{\sqrt{5}}{3}} \\
& = \pm \frac{9}{\sqrt{5}} \\
M: x & =\frac{9}{\sqrt{5}} \\
M^{\prime}: x & =-\frac{9}{\sqrt{5}}
\end{aligned}
$$

(iii)

(iv)

$$
\begin{aligned}
& S P+S P^{\prime}=\varnothing \\
& P S=, e P M
\end{aligned}
$$

$P^{\prime} S^{\prime}=e P^{\prime} M^{\prime}$ where $m_{\text {and }} M^{\prime}$ are the feet of the perpendiculars from $P$ to $M$ and $m$ '.

$$
\begin{aligned}
P S+P^{\prime} S^{\prime} & =e\left(P M+P^{\prime} m^{\prime}\right) \\
& =e\left(M M^{\prime}\right. \\
& =e\left(\frac{a}{e}+\frac{a}{e}\right) \\
& =\frac{2 a e}{e} \\
P S+P^{\prime} S^{\prime} & =2 a \\
a & =3 \\
\therefore S P+S P^{\prime} & =6
\end{aligned}
$$

(v) $\quad \frac{x x_{0}}{a^{2}}+\frac{y y_{0}}{b^{2}}=1$

$$
\begin{aligned}
& \frac{3 x}{9}+\frac{2 y}{4}=1 \\
& \frac{x}{3}+\frac{y}{2}=1
\end{aligned}
$$

$b(i)$

(Ii)

$$
\begin{gathered}
x y=c^{2} \\
y=\frac{c^{2}}{x} \\
\frac{d y}{d x}=-\frac{c^{2}}{x^{2}}
\end{gathered}
$$

at $P$, grad tangent $=-\frac{1}{t^{2}}$

$$
\therefore \text { grad normal }=t^{2}
$$

Eon of taunt $y-\frac{c}{t}=-\frac{1}{t^{2}}(x-c t)$

$$
\begin{aligned}
& t^{3} y-c t=-x+c t \\
& x+t^{2} y=2 c t
\end{aligned}
$$

Equation of normal

$$
\begin{aligned}
& y-\frac{c}{t}=t^{2}(x-c t) \\
& t y-c=t^{3} x-c t^{4} \\
& t y+c t^{4}=t^{3} x+c
\end{aligned}
$$

( $1 i \lambda$ )

$$
\begin{aligned}
& X(2 c t, 0) \\
& Y\left(0, \frac{2 c}{t}\right) \\
& R\left(\frac{c\left(t^{2}+1\right)}{t} ; \frac{c\left(t^{2}+1\right)}{t}\right) \\
& S\left(\frac{c\left(t^{2}-1\right)}{t},-\frac{c\left(t^{2}-1\right)}{t}\right)
\end{aligned}
$$

Midpoint $x y=(c t, t)$
Midpoint RS $=\left(\frac{2 c t^{2}}{t}, \frac{2 c}{t}\right)$

$$
=c\left(t, \frac{c}{t}\right) .
$$

Grad $\begin{aligned} x y & =\frac{\frac{2 c}{t}}{-2 c t} \\ & =-\frac{1}{t^{2}}\end{aligned}$

$$
\begin{aligned}
\operatorname{Grad} R S & =\frac{\frac{2 c t^{2}}{t}}{2 c} \\
& =t^{2}
\end{aligned}
$$

$$
\therefore R S \perp \times Y
$$

$\therefore$ ReVs is a rhombus

Question 15
a.)

$$
P(x)=(x+1)(x-3) \cdot G(x)+a x+b
$$

$$
\begin{align*}
& P(-1)=-a+b=6 .  \tag{1}\\
& P(3)=3 a+b=-2 \tag{2}
\end{align*}
$$

(1) - (2)

$$
\text { (2) } \begin{gathered}
-4 a=8 \\
a=-2 \\
\therefore b=4 \\
x^{2}-2 x-3=(x+1)(x-3)
\end{gathered}
$$

when dixded by $x^{2}-2 x-3$

$$
\therefore R(x)=-2 x+4 .
$$

b(i)

$$
\begin{aligned}
\alpha, \beta, \gamma \ldots \alpha^{2} \beta^{2}+\gamma^{2} & =(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\gamma \alpha) \\
& =0-2 \beta .
\end{aligned}
$$

(ii)

$$
\begin{gathered}
\alpha^{3}+\beta^{3}+\gamma^{3}=-2 p \\
\alpha^{3}+p \alpha+q=0 \\
\beta^{3}+p \beta+q=0 \\
\gamma^{3}+p \gamma+q=0 \\
\alpha^{3}+\beta^{3}+\gamma^{3}+p(\alpha+\beta+\gamma)+3 q=0 \\
\alpha^{3}+\beta^{3}+\gamma^{3}+p \cdot 0+3 q=0 \\
\therefore \alpha^{3}+\beta^{3}+\gamma^{3}=-3 q
\end{gathered}
$$

(c) Ley $y=x-1$.

$$
\begin{aligned}
& \therefore x=y+1 \\
& 3(y+1)^{3}-5(y+1)^{2}-4(y+1)+3=0 \\
& 3\left(y^{3}+3 y^{2}+3 y+1\right)-5\left(y^{2}+2 y+1\right)-6(y+1)+3=0 \\
& 3 y^{3}+9 y^{2}+9 y+3-5 y^{2}-10 y-5-4 y-4+3=0 \\
& 3 y^{3}+4 y^{2}-5 y-3=0
\end{aligned}
$$

in terms of $x$

$$
3 x^{3}+4 x^{2}-5 x-3=0
$$

(d) (i) $P(x)=x^{n}+a x-b$
double root if $x=\alpha$

$$
\begin{aligned}
& P^{\prime}(x)=n x^{n-1}+a \\
& P^{\prime \prime}(x)=n(n-1) x^{n-2}
\end{aligned}
$$

note $P(\alpha)=0 \Rightarrow \alpha^{n}+a \alpha-b=0$

$$
\begin{aligned}
p^{\prime}(\alpha)=0 \Rightarrow & n \alpha^{n^{-1}}+a=0 \\
& \therefore \alpha^{n^{\prime}}=-\frac{a}{n}
\end{aligned}
$$

(ii)

$$
\begin{gather*}
p(\alpha)=\alpha^{n}+a \alpha-b=0 \\
P^{\prime}(\alpha)=n \alpha^{n-1}+a=0 \\
n \alpha^{n}+a \alpha=0 \tag{2}
\end{gather*}
$$

(1) $-2(2)$

$$
\begin{gather*}
(1-n) \alpha^{n}-b=0 \\
\alpha^{n}=\frac{b}{1-n} \tag{3}
\end{gather*}
$$

also $\alpha^{n^{-1}}=-\frac{a}{n}$
from (3)

$$
\left(\alpha^{n}\right)^{n-1}=\left(\frac{b}{1-n}\right)^{n-1}
$$

from (4) $\left(\alpha^{n-1}\right)^{n}=\left(-\frac{a}{n}\right)^{n}$

$$
\begin{aligned}
& \left(\frac{b}{1-n}\right)^{n-1}=\left(-\frac{a}{n}\right)^{n} \\
& \left(\frac{b}{n-1}\right)^{n-1}=(-1)^{n}\left(\frac{a}{n}\right)^{n} \\
& (-1)^{n-1}\left(\frac{b}{n-1}\right)^{n-1}=(-1)^{n-1}\left(\frac{a}{n}\right)^{n} \\
& \left(\frac{a}{n}\right)^{n}+\left(\frac{b}{n-1}\right)^{n-1}=0
\end{aligned}
$$

(iii) double root is $\alpha$

$$
\begin{aligned}
\alpha & =\frac{\alpha^{n}}{\alpha^{n-1}} \leftarrow \text { use (3) } \\
& =\left(\frac{b}{1-n}\right) /-\frac{a}{n} \\
\alpha & =\frac{b n}{-a(1-n)}=\frac{b n}{a(n-1)}
\end{aligned}
$$

Question ic.
(a)

$$
\begin{aligned}
\text { Let } x & =\frac{a+b}{2} \\
y & =\frac{c+d}{2} \\
\therefore \frac{x+y}{2} & =\frac{a+b+c+d}{4}
\end{aligned}
$$

$$
\text { Now } \frac{x+y}{2} \geqslant \sqrt{x y}
$$

$$
\therefore \frac{a+b+c+d}{4} \geqslant \sqrt{\sqrt{a c} \sqrt{c d}}
$$

$$
\frac{a+b+c+d}{4} \geqslant \sqrt[4]{a b c d}
$$

(ii) Let $x=\tan \theta$ then $\tan 50=0 \because x^{4}-10 x^{2}+5=0$

$$
\begin{gathered}
5 \theta=0 \text { or } \pi \text { or } 2 \pi, \cdots \\
\theta=\frac{\pi}{5}, \frac{2 \pi}{5}, \frac{3 \pi}{5}, \frac{4 \pi}{5} \\
\tan \frac{3 \pi}{5}=-\tan \left(\pi-\frac{3 \pi}{5}\right) \\
=-\tan \frac{2 \pi}{5} \alpha \tan \frac{4 \pi}{5}=-\tan \frac{\pi}{5}
\end{gathered}
$$

root $x= \pm \tan \frac{\pi}{5}$ and $\pm \tan \frac{2 \pi}{5}$,

$$
\alpha \beta \gamma \delta=\frac{e}{a}
$$

$$
=5 .
$$

$$
\begin{aligned}
& \text { b) } 1, \operatorname{cis} 5 \theta=(\cos \theta)^{5} \\
& \cos 5 \theta+i \sin 5 \theta=\cos ^{5} \theta+i 5 \cos ^{4} \theta \sin \theta-10 \cos ^{3} \theta \sin ^{2} \theta-i 10 \cos ^{2} \theta \sin ^{3} \theta \\
& +5 \cos \theta \sin ^{4} \theta+i \sin ^{5} \theta \\
& \therefore \cos 5 \theta=\cos ^{5} \theta-10 \cos ^{3} \theta \sin ^{2} \theta+5 \cos \theta \sin ^{4} \theta \\
& \sin 5 \theta=5 \cos ^{4} \sin Q+10 \cos ^{2} \sin ^{3} \theta+\sin ^{5} Q \\
& \tan 5 \theta=\frac{5 \cos ^{4} \theta \sin \theta-10 \cos ^{2} \theta \sin ^{3} \theta+\sin ^{5} \theta}{\cos 5 \theta-10 \cos ^{3} \theta \cdot \sin ^{2} \theta+5 \cos \theta \sin 4 \theta} \\
& =\frac{5 \tan \theta-10 \tan ^{3} \theta+\tan ^{5} Q}{1-10 \tan ^{2} Q+5 \tan ^{4} \theta} \\
& =\tan \theta \cdot \frac{5-10 \tan ^{2} \theta+\tan ^{4} \theta}{1-10 \tan ^{2} \theta+5 \tan ^{4} \theta}
\end{aligned}
$$

Question $16(9)$
(1)

$\cos 60=\frac{A B}{2}$

$$
\begin{aligned}
A B & =1 . \\
\sin 60 & =\frac{r}{A B} \\
r & =\frac{\sqrt{3}}{2} .
\end{aligned}
$$

(ii) Let tension in rods $A B$ and $B C$
be $T_{1}$ and $T_{2}$ respectively


$$
\begin{aligned}
& \sum f_{v}=0 \\
& T_{1} \cos 60=T_{2} \cos 30+m g \\
& T_{1}\left(\frac{1}{2}\right)=T_{2}\left(\frac{\sqrt{3}}{2}\right)+10 g \\
& T_{1}=T_{2} \sqrt{3}+20 g \\
& \sum F_{H}=m r w^{2} \\
& T_{1} \sin 60+T_{2} \sin 30=m r w^{2} \\
& T_{1}\left(\frac{\sqrt{3}}{2}\right)+T_{2}\left(\frac{1}{\varepsilon}\right)=10\left(\frac{\sqrt{3}}{2}\right)(3 \pi)^{2} \\
& T_{1}=90 \pi^{2}-\frac{T_{2}}{\sqrt{3}} \\
& T_{2} \sqrt{3}+20 g=90 \pi^{2}-\frac{T_{2}}{\sqrt{3}} \\
& T_{2}=\frac{5 \sqrt{3}}{2}\left(9 \pi^{2}-2 g\right) \text { so tensions in } A B \text { and } B C \text { one } \\
& T_{1}=\frac{5}{2}\left(27 \pi^{2}+2 g\right) \text { so } \quad \frac{5}{2}\left(27 \pi^{2}+2 g\right)^{\frac{2}{5}} \sqrt{3}\left(4 \pi^{2} N^{2 g}\right)
\end{aligned}
$$

16d). $n=1$

$$
a_{1}<\sqrt{2+a_{0}}=\sqrt{3}
$$

since $\sqrt{2}<\sqrt{3}<2$ is true for $n=1$.
Assume true for $n=K$

$$
\sqrt{2}<a_{k}<2
$$

Now prove true for $n=k+1$

$$
\sqrt{2}<a_{A+1}<2
$$

From (A) $\sqrt{2}<a_{k}<2$

$$
\begin{aligned}
& 2+\sqrt{2}<2+a_{k}<4 \\
& \sqrt{2+\sqrt{2}}<\sqrt{2+a_{k}}<2 \\
& \sqrt{2+\sqrt{2}}<a_{k+1}<2
\end{aligned}
$$

Now $2<2+\sqrt{2} \Rightarrow \sqrt{2}<\sqrt{2+\sqrt{2}}$

$$
\therefore \sqrt{2}<a_{k+1}<2
$$

$\therefore$ proved by mathematical induction.

