Factorising Complex Expressions

If a polynomial's coefficients are all real then the roots will appear in complex conjugate pairs.

Every polynomial of degree n can be;

- factorised as a mixture of quadratic and linear factors over the real field
- factorised to n linear factors over the complex field

NOTE: odd ordered polynomials must have a real root
e.g. (i) $x^{2}+2 x+2=(x+1)^{2}+1$

$$
=(x+1+i)(x+1-i)
$$

(ii) $z^{4}+z^{2}-12=0$

$$
\left(z^{2}-3\right)\left(z^{2}+4\right)=0
$$

$$
(z+\sqrt{3})(z-\sqrt{3})\left(z^{2}+4\right)=0 \quad \text { (factorised over Real numbers) }
$$

$$
(z+\sqrt{3})(z-\sqrt{3})(z+2 i)(z-2 i)=0 \text { (factorised over Complex numbers) }
$$

$$
z= \pm \sqrt{3} \text { or } z= \pm 2 i
$$

If $(x-a)$ is a factor of $P(x)$, then $P(a)=0$
If $(a x-b)$ is a factor of $P(x)$, then $P\left(\frac{b}{a}\right)=0$
(iii) Factorise $2 x^{3}-3 x^{2}+8 x+5$
as it is a cubic it must have a real factor

$$
\begin{array}{rlrl}
P\left(-\frac{1}{2}\right) & =2\left(-\frac{1}{2}\right)^{3}-3\left(-\frac{1}{2}\right)^{2}+8\left(-\frac{1}{2}\right)+5 & & \therefore 2 x^{3}-3 x^{2}+8 x+5 \\
& =-\frac{1}{4}-\frac{3}{4}-4+5 & & =(2 x+1)\left(x^{2}-2 x+5\right) \\
& =0 & & \left.=(2 x+1)(x-1)^{2}+4\right] \\
& & =(2 x+1)(x-1-2 i)(x-1+2 i)
\end{array}
$$

(iv) Given that $P(x)=4 x^{4}+8 x^{3}+5 x^{2}+x-3$ has two rational zeros, find these zeros and factorise $P(x)$ over the complex field.

$$
\begin{aligned}
P\left(\frac{1}{2}\right) & =4\left(\frac{1}{16}\right)+8\left(\frac{1}{8}\right)+5\left(\frac{1}{4}\right)+\frac{1}{2}-3 \\
& =0
\end{aligned}
$$

$\therefore(2 x-1)$ is a factor

$$
P(x)=(2 x-1)\left(2 x^{3}+5 x^{2}+5 x+3\right)
$$

$$
P\left(-\frac{3}{2}\right)=2\left(\frac{-27}{8}\right)+5\left(\frac{9}{4}\right)+5\left(-\frac{3}{2}\right)+3
$$

$$
=0
$$

$\therefore(2 x+3)$ is a factor
\therefore rational zeros are $\frac{1}{2}$ and $-\frac{3}{2}$

$$
\begin{array}{rlr}
P(x) & =4 x^{4}+8 x^{3}+5 x^{2}+x-3 & \\
& =(2 x-1)(2 x+3)\left(x^{2}+x+1\right) & \\
& =(2 x-1)(2 x+3)\left[\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}\right] & \frac{1}{4}=6 x \\
& =(2 x-1)(2 x+3)\left(x+\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)\left(x+\frac{1}{2}-\frac{\sqrt{3}}{2} i\right) &
\end{array}
$$

Cambridge: Exercise 5A; 1b, 2, 3, 5, 6, 7b, 8, 9, 10, 12 to 15

