Multiple Roots

If P(x), has a root, x = a, of multiplicity m,

then P'(x) has a root, x = a, of multiplicity m - 1

Proof:

$$P(x) = (x - a)^{m} Q(x) \qquad (m > 1, x = a \text{ is not a root of } Q(x))$$

$$P'(x) = (x - a)^{m} Q'(x) + Q(x)m(x - a)^{m-1}(1)$$

$$= (x - a)^{m-1}[(x - a)Q'(x) + mQ(x)]$$

$$= (x - a)^{m-1} R(x) \qquad (\text{where } x = a \text{ is not a root of } R(x))$$

 \therefore <u>*P*'(*x*) has a root, *x* = *a*, of multiplicity *m* - 1</u>

e.g. (i) Solve the equation $x^3 - 4x^2 - 3x + 18 = 0$, given that it has a double root

$$P(x) = x^{3} - 4x^{2} - 3x + 18$$

$$P'(x) = 3x^{2} - 8x - 3$$

$$= (3x + 1)(x - 3)$$

$$\therefore \text{ double root is } x = -\frac{1}{3} \text{ or } x = 3$$

$$\textbf{NOT POSSIBLE}$$

$$As (3x + 1) \text{ is not a factor}$$

$$x^{3} - 4x^{2} - 3x + 18 = 0$$

$$(x - 3)^{2}(x + 2) = 0$$

$$x = -2 \text{ or } x = 3$$

(*ii*) (1991)

Let $x = \alpha$ be a root of the quartic polynomial; $P(x) = x^4 + Ax^3 + Bx^2 + Ax + 1$ where $(2+B)^2 \neq 4A^2$ a) show that α cannot be 0, 1 or -1 $P(0) = 1 \neq 0$, $\therefore \alpha \neq 0$ P(1) = 1 + A + B + A + 1 = 2A + B + 2 P(-1) = 1 - A + B - A + 1= -2A + B + 2

BUT

$$(2+B)^2 \neq 4A^2$$

$$2+B \neq \pm 2A$$

$$\pm 2A+B+2 \neq 0$$

$$\therefore P(1) \neq 0, P(-1) \neq 0$$

hence $\alpha \neq \pm 1$

c) Deduce that if α is a multiple root, then its multiplicity is 2 and $4B = 8 + A^2$ If α is a double root of P(x), then so is $\frac{1}{x}$, which accounts for 4 roots However P(x) is a quartic which has a maximum of 4 roots

Thus no roots can have a multiplicity > 2 $P'(x) = 4x^3 + 3Ax^2 + 2Bx + A$ $\alpha + \frac{1}{\alpha} + \beta = -\frac{3}{4}A$ $1 + \alpha\beta + \frac{\beta}{\alpha} = \frac{1}{2}B$ $\beta = -\frac{1}{4}A$

let the roots be α , $\frac{1}{\alpha}$ and β (sum of roots)...(1)

 $(\sum \alpha \beta)...(2)$

 $(\sum \alpha \beta \gamma)...(3)$

Substitute (3) into (2)

Patel: Exercise 5B; 6b, 7b, 8 a,c,e,g,h

Note: tangent to a cubic has two solutions Only. A double root and a single root